Состав ядра атома. Расчет протонов и нейтронов

Энергетическое состояние и расположение электронов в оболочках или слоях атомов определяют четырьмя числами, которые называются квантовыми и обычно обозначаются символами n, l, s и j; квантовые числа имеют, прерывный, или дискретный, характер, т. е. могут получать только отдельные, дискретные, значения, целые или полуцелые.

По отношению к квантовым числам п, l, s и j необходимо еще иметь в виду следующее:

1. Квантовое число n называется главным; оно общее для всех электронов, входящих в состав одной и той же электронной оболочки; иначе говоря, каждой из электронных оболочек атома отвечает определенное значение главного квантового числа, а именно: для электронных оболочек К, L, М, N, О, Р и Q главные квантовые числа равны соответственно 1, 2, 3, 4, 5, 6 и 7. В случае одноэлектроиного атома (атом водорода) главное квантовое число служит для определения орбиты электрона и одновременно энергии атома при стационарном состоянии.

2. Квантовое число I называется побочным, или орбитальным, и определяет момент количества движения электрона, вызванного его вращением вокруг атомного ядра. Побочное квантовое число может иметь значения 0, 1, 2, 3, . . . , а в общем виде обозначается символами s, р, d, f, . . . Электроны, имеющие одно и то же побочное квантовое число, образуют подгруппу, или, как часто говорят, находятся на одном и том же энергетическом подуровне.

3. Квантовое число s часто называют спиновым, так как оно определяет момент количества движения электрона, вызванного его собственным вращением (момент спина).

4. Квантовое число j называется внутренним и определяется суммой векторов l и s.

Распределение электронов в атомах (атомных оболочках) следует также некоторым общим положениям, из них необходимо указать:

1. Принцип Паули, согласно которому в атоме не может быть больше одного электрона с одинаковыми значениями всех четырех квантовых чисел, т. е. два электрона в одном и том же атоме должны различаться между собой значением хотя бы одного квантового числа.

2. Принцип энергетический, согласно которому в основном состоянии атома все его электроны должны находиться на наиболее низких энергетических уровнях.

3. Принцип количества (числа) электронов в оболочках, согласно которому предельное число электронов в оболочках не может превышать 2n 2 , где n - главное квантовое число данной оболочки. Если число электронов в некоторой оболочке достигает предельного значения, то оболочка оказывается заполненной и в следующих элементах начинает формироваться новая электронная оболочка.

В соответствии с тем, что было сказано, в таблице ниже даны: 1) буквенные обозначения электронных оболочек; 2) соответствующие значения главных и побочных квантовых чисел; 3) символы подгрупп; 4) теоретически рассчитанное наибольшее число электронов как в отдельных подгруппах, так и в оболочках в целом. Необходимо указать, что в оболочках К, L и М число электронов и их распределение по подгруппам, определенные из опыта, вполне отвечают теоретическим вычислениям, но в следующих оболочках наблюдаются значительные расхождения: число электронов в подгруппе f достигает предельного значения только в оболочке N, в следующей оболочке оно уменьшается, а затем исчезает и вся подгруппа f.

Оболочка

Подгруппа

Число электронов в подгруппе

Число электронов в оболочке (2n 2)

В таблице даны число электронов в оболочках и их распределение по подгруппам для всех химических элементов, в том числе и трансурановых. Числовые данные этой таблицы были установлены в результате очень тщательных спектроскопических исследований.

1-й период

2-й период

3-й период

4-й период

5-й период

6-й период

7-й период

_______________

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, - М.: 1960.

Инструкция

Если атом электронейтрален, то число электронов в нем равно числу протонов. Число протонов соответствует атомному элемента в таблице Менделеева. Например, имеет первый атомный номер, поэтому его атом имеет один . Атомный номер натрия - 11, поэтому атом натрия имеет 11 электронов.

Атом также может терять или присоединять . В этом случае атом становится ионом, имеющим электрический положительный или . Допустим, один из электронов натрия покинул электронную оболочку атома. Тогда атом натрия станет положительно заряженным ионом, имеющим заряд +1 и 10 электронов на своей электронной оболочки. При присоединении электронов атом становится отрицательным ионом.

Атомы химических элементов могут также соединяться в молекулы, наименьшую частицу вещества. Количество электронов в молекуле равно количеству электронов всех входящих в нее атомов. Например, молекула воды H2O состоит из двух атомов водорода, каждый из которых имеет по одному электрону, и атома кислорода, который имеет 8 электронов. То есть, в молекуле воды всего 10 электронов.

Атом химического элемента состоит из атомного ядра и электронной оболочки. В состав атомного ядра входят два типа частиц - протоны и нейтроны. Почти вся масса атома сосредоточена в ядре, потому что протоны и нейтроны намного тяжелее электронов.

Вам понадобится

  • атомный номер элемента, N-Z диаграмма.

Инструкция

Нейтроны не имеют электрического заряда, то есть их электрический заряд равен нулю. Это и представляет основную сложность при числа нейтронов - атомный номер элемента или его электронная оболочка не дают однозначного ответа на этот вопрос. Например, в ядре всегда содержится 6 протонов, однако протонов в нем может быть 6 и 7. Разновидности ядер элемента с разным количеством нейтронов в ядре изотопами этого элемента. Изотопы могут быть природными, а могут быть и получены .

Ядра атомов обозначают буквенным символом химического элемента из таблицы Менделеева. Справа от символа вверху и внизу стоят два числа. Верхнее число A - это массовое число атома. A = Z+N, где Z - заряд ядра (число протонов), а N - число нейтронов. Нижнее число - это Z - заряд ядра. Такая запись дает информацию о количестве нейтронов в ядре. Очевидно, что оно равно N = A-Z.

У разных изотопов одного химического элемента число A меняется, что можно увидеть в записи этого изотопа. Определенные изотопы имеют свои оригинальные названия. Например, обычное ядро водорода не имеет нейтронов и имеет один протон. Изотоп водорода дейтерий имеет один нейтрон (A = 2, цифра 2 сверху, 1 снизу), а изотоп тритий - два нейтрона (A = 3, цифра 3 сверху, 1 снизу).

Зависимость числа нейтронов от числа протонов отражена на так называемой N-Z диаграмме атомных ядер. Устойчивость ядер зависит от отношения числа нейтронов и числа протонов. Ядра легких нуклидов наиболее устойчивы при N/Z = 1, то есть при равенстве количества нейтронов и протонов. С ростом массового числа область устойчивости сдвигается к величинам N/Z>1, достигая величины N/Z ~ 1,5 для наиболее тяжелых ядер.

Видео по теме

Источники:

  • Строение атомного ядра
  • как найти количество нейтронов

Атом состоит из ядра и окружающих его электронов, которые вращаются вокруг него по атомным орбиталям и образуют электронные слои (энергетические уровни). Количество отрицательно заряженных частиц на внешних и внутренних уровнях определяет свойства элементов. Число электронов, содержащихся в атоме, можно найти, зная некоторые ключевые моменты.

Вам понадобится

  • - бумага;
  • - ручка;
  • - периодическая система Менделеева.

Инструкция

Чтобы определить количество электронов, воспользуйтесь периодической системой Д.И. Менделеева. В этой таблице элементы расположены в определенной последовательности, которая тесно связана с их атомным строением. Зная, что положительный всегда равен порядковому номеру элемента, вы легко найдете количество отрицательных частиц. Ведь известно - атом в целом нейтрален, а значит, число электронов будет равно числу и номеру элемента в таблице. Например, равен 13. Следовательно, количество электронов у него будет 13, у натрия – 11, у железа – 26 и т.д.

Если вам необходимо найти количество электронов на энергетических уровнях, сначала повторите принцип Пауля и правило Хунда. Потом распределите отрицательные частицы по уровням и подуровням с помощью все той же периодической системы, а точнее ее периодов и групп. Так номер горизонтального ряда (периода) указывает на количество энергетических слоев, а вертикального (группы) – на число электронов на внешнем уровне.

Не забывайте о том, что количество внешних электронов равно номеру группы только у элементов, которые находятся в главных подгруппах. У элементов побочных подгрупп количество отрицательно заряженных частиц на последнем энергетическом уровне не может быть больше двух. Например, у скандия (Sc), находящегося в 4 периоде, в 3 группе, побочной подгруппе, их 2. В то время как у галия (Ga), который находится в том же периоде и той же группе, но в главной подгруппе, внешних электронов 3.

При подсчете электронов в атоме , учтите, что последние образуют молекулы. При этом атомы могут принимать, отдавать отрицательно заряженные частицы или образовывать общую пару. Например, в молекуле водорода (H2) общая пара электронов. Другой случай: в молекуле фторида натрия (NaF) общая сумма электронов будет равна 20. Но в ходе химической реакции атом натрия отдает свой электрон и у него остается 10, а фтор принимает - получается тоже 10.

Полезный совет

Помните, что на внешнем энергетическом уровне может быть только 8 электронов. И это не зависит от положения элемента в таблице Менделеева.

Источники:

  • a так как атом то номер элемента

Атомы состоят из субатомных частиц - протонов, нейтронов и электронов. Протоны представляют собой положительно заряженные частицы, которые находятся в центре атома, в его ядре. Вычислить число протонов изотопа можно по атомному номеру соответствующего химического элемента.

Модель атома

Для описания свойств атома и его структуры используется модель, известная под названием «Модель атома по Бору». В соответствии с ней структура атома напоминает солнечную систему - тяжелый центр (ядро) находится в центре, а более легкие частицы движутся по орбите вокруг него. Нейтроны и протоны образуют положительно заряженное ядро, а отрицательно заряженные электроны движутся вокруг центра, притягиваясь к нему электростатическими силами.

Элементом называют вещество, состоящее из атомов одного типа, он определяется числом протонов в каждом из них. Элементу присваивают свое имя и символ, например, водород (H) или кислород (О). Химические свойства элемента зависят от числа электронов и, соответственно, числа протонов, содержащихся в атомах. Химические характеристики атома не зависят от числа нейтронов, так как не имеют электрического заряда. Однако их число влияет на стабильность ядра, изменяя общую массу атома.

Изотопы и число протонов

Изотопами называют атомы отдельных элементов с различным числом нейтронов. Данные атомы химически идентичным, однако обладают разной массой, также они отличаются своей способностью испускать излучение.

Атомный номер (Z) - это порядковый номер химического элемента в периодической системе Менделеева, он определяется числом протонов в ядре. Каждый атом характеризуется атомным номером и массовым числом (А), которое равно суммарному числу протонов и нейтронов в ядре.

Элемент может иметь атомы с различным числом нейтронов, но количество протонов остается неизменным и равно числу электронов нейтрального атома. Для того, чтобы определить, сколько протонов содержится в ядре изотопа, достаточно посмотреть на его атомный номер. Число протонов равно номеру соответствующего химического элемента в периодической таблице Менделеева.

  • Радиация, Введение в радиационную защиту

Ядро всех атомов (за исключением водорода) состоит из положительно заряженных протонов и не несущих электрического заряда нейтронов.

Масса протона составляет 1,67х10-24 г, а электрона - всего 9,1х10-28 г, т.е. разница составляет 4 порядка, Размеры: протона и нейтрона - порядка 10-16 см, а электрона - порядка 10-13 см, т.е. соотношение как раз обратное.

При этом размер атомов имеет порядок 10-8 см, т.е. 100 000 раз больше размера электрона и в 100 000 000 раз больше размеров протона, соответственно, атом обладает весьма «ажурной» структурой.

Различие в массе между протонами и нейтронами - всего в 1,0014 раза, что практически несущественно и этой разницей можно пренебречь. Поэтому во всех расчетах массы протона и нейтрона принимаются за 1, а масса электрона - за 0 (т.к. при различии на 4 порядка даже суммарная масса сотни электронов будет столь мала, что ей можно пренебречь, а атомов, в которых число электронов хотя бы приближалось к 1000 в природе не известно, да и теоретически возможность их существования весьма сомнительна).

В целом атом электрически нейтрален. Число положительных зарядов (протонов) уравновешивается числом отрицательных зарядов (электронов).

Если атом теряет или приобретает некоторое число электронов, он переходит в заряженное (ионизированное) состояние.

Химическая индивидуальность атома определяется числом его протонов, т.е. зарядом ядра.

Разновидности одного и того же химического элемента по числу нейтронов (с разными атомными массами) называются изотопами.

Максимально возможное количество электронов на каждом уровне: 2n2 (число Паули), где n - номер оболочки.

Т.о., на 1 уровне могут размещаться 2 электрона, на 2 уровне - 8 электронов, на 3 - 18, на 4 - 32 электрона и т.д.

Внутри каждого из уровней выделяются подуровни, образуемые различными типами электронов (различаются по морфологии орбит и различной энергией):

S - одна сферическая орбита в пределах каждого уровня; на ней может быть расположено не более 2 электронов с противоположными спинами (движущимися в противоположных направлениях;

p - три «гантелеобразных» орбиты, ориентированные взаимно перпендикулярно; тоже до двух электронов на каждой, всего не более 6;

d и f - более удалённые от ядра, морфологически более сложные; вместимость подуровня d - не более 10, f - не более 14 электронов.

Легко запомнить, что количество орбит различных типов соответствует натуральному ряду чисел: 1, 3, 5, 7 …

Число же электронов на каждой орбите можно определить умножением этого ряда на два (2, 6, 10, 14), так как на каждой из орбит могут одновременно находиться два электрона с противоположными спинами.

Отсюда - заполняемость оболочек:

Максимальной энергетической устойчивостью обладают внешние электронные оболочки с числом электронов 2 и 8.

Ионизация - результат способности атома элемента принять или отдать определённое число электронов для достижения максимальной энергетической устойчивости внешней оболочки. Существуют положительные (катионы) и отрицательные (анионы) ионы. С зарядом ионов связано свойство валентности.

Д.И. Менделеев открыл периодичность изменения химических свойств элементов в зависимости от их атомного веса (точнее, порядкового номера). При составлении Периодической таблицы выяснилось, что периодичность имеет более сложный характер, чем можно было бы предположить. Причина в том, что при увеличении порядкового номера элемента порядок заполняемости уровней и подуровней электронами не является линейно последовательным. элемент атом орбита электрон

Чтобы разобраться как происходит заполнение электронных оболочек, удобно использовать формулы строения электронных оболочек химических элементов.

Формула для водорода - 1 s1, т.е всего один электрон типа s на первом энергетическом уровне.

Формула для элемента, завершающего первый ряд в системе Менделеева, будет иметь вид:

2s1 - отвечает гелию.

II период:

Формула для конца второго ряда:

2s1, 2s2 6p2 - неон.

В его начале - элементы, отдающие электроны и образующие катионы (металлы). В конце - неметаллы. Эти элементы (азот, кислород, фтор) присоединяют электроны до заполнения внешнего уровня, образуя анионы. Между ними - углерод, способный как отдавать, так и принимать электроны (образует как кислородные соединения, так и с водородом, металлами).

III период:

Третий ряд также завершается благородным газом:

2s1, 2s2 6p2, 2s3 6p3 - аргон.

Здесь в третьем уровне остаётся незаполненным подуровень d, который может вместить 10 электронов. Но, так как на внешней оболочке расположено 8 электронов, т.е. устойчивое число (не по свойствам самого числа, в пифагорейском смысле, а в смысле наибольшей энергетической устойчивости такого количества электронов), то это - завершённый период.

IV период:

И, хотя остаётся незаполненным подуровень d третьего уровня, далее начинается заполнение четвёртого уровня. И следующим вновь оказывается очередной щелочной элемент - калий (2s1, 2s2 6p2, 2s3 6p3, 1s4)

Но с третьего элемента этого периода - скандия - начинается заполнение того самого подуровня d, который остался пропущен. И потому далее два валентных электрона остаются на внешнем (четвёртом) уровне, а остальные продолжают заполнять третий (добавляется по одному, вплоть до никеля):

2s1, 2s2 6p2, 2s3 6p3 8d3, 2s4

Отсюда вытекают два следствия:

Большую часть следующего периода составляют элементы, образующие катионы, т.е. имеющие свойства металлов (потому что из-за малого числа электронов на внешней оболочке их потеря энергетически выгоднее, чем присоединение).

Широко распространена переменная валентность, так как, помимо потери двух электронов с внешнего уровня возможна и потеря части электронов, обычно одного, с подуровня d) .

У меди, по сравнению с никелем, добавляется 1 электрон, но на заполнение подуровня d третьей оболочки переходят сразу 2 электрона, и она, таким образом, заполняется окончательно. А на внешней оболочке остаётся один электрон, и медь снова может быть одновалентна.

2s1, 2s2 6p2, 2s3 6p3 10d3, 1s4

При этом 18-электронная внешняя оболочка значительно менее энергетически выгодна, чем 8-электронная. Потому менее выгодно и отдавать этот единственный электрон с внешней оболочки. В результате, медь и её аналоги (серебро, золото) могут в природе существовать в самородном состоянии, не вступая в соединения с другими элементами. Причём химическая инертность среди них нарастает от меди к золоту.

А завершается этот период элементом с электронной формулой:

2s1, 2s2 6p2, 2s3 6p3 10d3, 2s4 8p4.

Это опять инертный газ - криптон.

Далее опять начинается с добавления одного, потом двух электронов на очередной (уже пятый) уровень (рубидий, стронций). А потом - заполнение d-подуровня предыдущего уровня. Всё аналогично IV периоду. В конце - очередной инертный газ (ксенон).

2s1, 2s2 6p2, 2s3 6p3 10d3, 2s4 8p4 10d4 2s5 8p5.

VI период:

Начинается аналогично предыдущим периодам - щелочным и щелочноземельным элементами (цезий, барий). С третьего элемента - лантана - опять появляется первый электрон на подуровне d предыдущего уровня. Но ведь до сих пор внутри четвертого (уже позапредыдущего!) уровня остался не заполнен появляющийся здесь подуровень f. И после лантана начинается заполнение этого подуровня. Новые добавочные электроны оказываются глубоко внутри, далеко от внешнего уровня. Они практически не влияют на валентные свойства атомов, и вся большая группа следующих элементов занимает в таблице Менделеева одну клеточку с лантаном. Потом уже продолжается заполнение подуровня 5d, и так далее.

VII период:

В начале повторяет VI период. Можно предполагать, что в его рамках должно происходить заполнение ещё большего числа подуровней, и он должен оказаться ещё длиннее. Но, так как он не завершён из-за неустойчивости сверхтяжёлых элементов, это остаётся лишь предположением.

С ростом атомного номера элемента закономерно изменяются не только химические свойства элементов, но и их размеры - атомные и ионные радиусы.

Это особенно важно для геохимии, так как помимо валентных свойств химических элементов, процессы их миграции в существенной мере зависят от их размеров. В наибольшей мере, эти параметры влияют на явления изоморфизма - взаимозамещения атомов в химических соединениях (это явление Вам известно из курса общей геологии, а далее мы рассмотрим его несколько подробнее).

Определение размеров атомов и ионов стало возможным благодаря появлению метода изучения кристаллических решеток и их параметров рентгеноструктурным методом (изучение структуры кристаллической решетки по характеру дифракции проходящих через неё рентгеновских лучей).

Закономерности:

Величины ионных радиусов колеблются от 0,46 ангстрем у водорода до 2,62 - у цезия.

Значения ионных радиусов у элементарных анионов всегда превышают атомные, а у катионов являются меньшими.

Величины атомных и ионных радиусов изменяются с периодичностью, соответствующей положению элементов в периодической системе Менделеева.

Максимальные значения атомных радиусов характерны для элементов, с которых начинается заполнение очередного энергетического уровня электронных оболочек, т.е. начинающих периоды (щелочных элементов). Исключение - самый первый из них (литий), атомный радиус которого меньше, чем у гелия.

В пределах каждого периода вначале наблюдается постепенное уменьшение атомных радиусов, затем сменяющееся их возрастанием.

В пределах групп периодической системы наблюдается возрастание величин атомных радиусов от легких элементов к более тяжелым. Закономерность не распространяется на элементы тяжелее лантана из-за так называемого лантаноидного сжатия (обусловленной возрастанием силы внутриатомных связей в результате заполнения внутренних электронных оболочек).

Обобщая все данные о распространённости химических элементов и их поведении в геохимических процессах, В.М. Гольдшмидт сформулировал основной закон геохимии:

Одним из основных законов геохимии является закон Ферсмана-Гольдшмидта, который можно сформулировать следующим образом: Геохимия элемента в земной коре определяется как химическими свойствами, так и величиной кларка.

Классификация Вернадского.

Подразделение химических элементов по характеру их поведения в процессах миграции.

Благородные газы - He, Ne, Ar, Kr, Xe. Соединения с другими атомами образуют исключительно редко, поэтому в природных химических процессах значительного участия не принимают.

Благородные металлы - Ru, Rh, Pd, Os, Ir, Pt, Au. Соединения редки. Преимущественно присутствуют в форме сплавов, и образуются в основном в глубинных процессах (магматических, гидротермальных).

Циклические элементы - H, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Ba, (Be, Cr, Ge, Zr, Sn, Sb, Te, Hf, W, Re, Hg, Tl, Pb, Bi). Наиболее многочисленная группа и преобладающая по массе. Для каждого элемента характерен определённый круг химических соединений, возникающих и распадающихся в ходе природных процессов. Таким образом, каждый элемент проходит цепочку превращений, в конечном счёте возвращаясь к исходной форме нахождения - и далее. Циклы не являются полностью обратимыми, так как часть элементов постоянно выходит из круговорота (и часть так же снова в него вовлекается).

Рассеянные элементы - Li, Sc, Ga, Br, Rb, Y, Nb, In, J, Cs, Ta. Безусловно, господствуют рассеянные атомы, не образующие химических соединений. Незначительная доля может участвовать в образовании самостоятельных минеральных соединений (большинство - в глубинных процессах, а J и Br - в гипергенных).

Редкоземельные элементы - La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tu, Yb, Lu. Тяготеют к рассеянным. Основная черта - совместная миграция.

Радиоактивные элементы - Po, Rn, Ra, Ac, Th, Pa, U. Основная специфика в том, что в геохимическом процессе происходит постоянное превращение одних элементов в другие, что делает процессы их химической миграции наиболее сложными.

Элементы условности данной классификации:

наличие химических элементов, занимающих промежуточное положение между группами, т.е. способных вести себя в миграционных процессах двояко; в этих случаях для отнесения такого элемента к одной из двух возможных групп «решающим аргументом будет история главной по весу части атомов или наиболее яркие черты их геохимической истории» (наличие доли субъективизма в таком критерии очевидно).

выделение в особую группу радиоактивных элементов не учитывает разной устойчивости изотопов; у ряда элементов существенной является доля как стабильных, так и нестабильных изотопов, и, естественно, геохимическая история соответствующих долей общего числа атомов данного элемента будет различной (K, Rb, Sm, Re и др.). Сейчас, в связи с процессами радиогенного загрязнения, необходимо учитывать и миграцию искусственных радиоактивных изотопов.

Классификация Гольдшмидта.

Наиболее широко применяемая классификация. Элементы сгруппированы на основе их способности формировать естественные ассоциации в природных процессах. Это определяется рядом факторов:

Строение электронных оболочек, обуславливающее химические свойства элементов.

Положение элементов на кривой атомных объёмов.

Химическое «сродство» к тем или иным конкретным элементам, т.е. преимущественная склонность именно с этими определёнными элементами образовывать соединения (может измеряться значениями энергии образования определённых типов их соединений, например, оксидных).

Элементы подразделены на 5 групп:

Литофильные - Li, Be, B, O, F, Na, Mg, Al, Si, P, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Br, Rb, Sr, Y, Zr, Nb, I, Cs, Ba, TR, Hf, Ta, W, At, Fr, Ra, Ac, Th, Pa, U. Включены кислород и галогены, а также ассоциирующие с ними элементы, то есть преимущественно образующие кислородные и галоидные соединения. Последние - это те, которые расположены на пиках и нисходящих участках кривых атомных объёмов, а также имеют максимальные величины энергии образования оксидных соединений.

Халькофильные (или тиофильные, «любящие» серу) - S, Cu, Zn, Ga, Ge, As, Se, Ag, Cd, In, Sn, Sb, Te, Au, Hg, Tl, Pb, Bi, Po). Те, которые ассоциируют преимущественно с медью и серой. Это - сера и её аналоги (селен, теллур), а также элементы, преимущественно склонные образовывать не оксидные, а сульфидные соединения. Для последних характерны 18-электронные внешние оболочки катионов, расположение на восходящих участках кривых атомных объёмов. Величины энергии образования кислородных соединений низкие. Некоторые способны существовать в самородном виде.

Сидерофильные - Fe, Co, Ni, Mo, Ru, Rh, Pd, Re, Os, Ir, Pt. Ассоциируют с железом. Все принадлежат к элементам с достраивающимися d-оболочками. Занимают промежуточное положение между лито- и халькофильными: минимумы на кривой атомных объёмов, промежуточные значения энергии образования кислородных соединений. В равной мере распространены и в оксидных, и в сульфидных ассоциациях.

Атмофильные - все инертные газы, N, H. Все являются газами, свойственно по преимуществу атомарное или молекулярное (вне соединений) состояние (видимость того, что Н представляет исключение, связана с тем, что атомарный водород теряется, рассеиваясь в космическом пространстве).

Неправомерным является дополнение этой классификации группой биофильных элементов.

Фанатичным математикам, обожающим подсчитывать всё на свете, давно хотелось узнать ответ на фундаментальный вопрос: сколько всего частиц во Вселенной? Учитывая, что приблизительно 5 триллионов атомов водорода могут поместиться на одной лишь головке булавки, при этом каждый из них состоит из 4 элементарных частиц (1 электрон и 3 кварка в протоне), можно с уверенностью предположить, что число частиц в наблюдаемой Вселенной находится за гранью человеческого представления.

Как бы то ни было, профессор физики Тони Падилла из Нотингемского университета разработал способ оценки общего количества частиц во Вселенной, не принимая в расчет фотоны или нейтрино, поскольку у них отсутствует (вернее, практически отсутствует) масса:

Для своих расчетов ученый использовал данные, полученные с помощью телескопа Планка, которые использовались для измерения реликтового излучения, являющегося самым старым из видимого светового излучения во Вселенной и, таким образом, формирующего подобие ее границы. Благодаря телескопу, ученые смогли оценить плотность и радиус видимой Вселенной.

Другая необходимая переменная — это доля вещества, содержащаяся в барионах. Эти частицы состоят из трех кварков, и наиболее известными барионами на сегодняшний день являются протоны и нейтроны, а потому в своем примере Падилла рассматривает именно их. Наконец, для расчета необходимо знание масс протона и нейтрона (которые примерно совпадают друг с другом), после чего можно приступать к вычислениям.

Что делает физик? Он берет плотность видимой Вселенной, умножает ее на долю плотности одних лишь барионов, а затем умножает результат на объем Вселенной. Получившуюся в результате массу всех барионов во Вселенной он делит на массу одного бариона и получает общее количество барионов. Но барионы нам не интересны, наша цель — элементарные частицы.

Известно, что каждый барион состоит из трех кварков — как раз они-то нам и нужны. Более того, общее число протонов (как все мы знаем из школьного курса химии) равно общему числу электронов, которые тоже являются элементарными частицами. Помимо этого, астрономы установили, что 75% вещества во Вселенной представлено водородом, а оставшиеся 25% - гелием, прочими же элементами при расчетах такого масштаба можно пренебречь. Падилла вычисляет количество нейтронов, протонов и электронов, после чего умножает две первые позиции на три — и у нас наконец есть итоговый результат.

3.28х10 80 . Более трех вигинтиллионов.

328.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.

Самое интересное, что, с учетом масштаба Вселенной, эти частицы не заполняют даже большую часть от ее общего объема. В результате, на один кубометр Вселенной приходится лишь одна (!) элементарная частица.

На вопрос Как вычислить кол-во электронов на орбитах {или как они по-русски называюцца заданный автором МАЛАЯ Трезвая-и-Злая! лучший ответ это Максимальное число электронов на 1 орбитали (электронном облаке) - 2. Близкие по размеру и энергии орбитали образуют подуровни, максимальное число электронов на них: s-подуровень - 2, p-подуровень - 6, d-подуровень - 10, f-подуровень - 14 (орбиталей на подуровне соответственно в 2 раза меньше). Близкие по энергии подуровни образуют ЭНЕРГЕТИЧЕСКИЕ УРОВНИ, или ЭЛЕКТРОННЫЕ СЛОИ (видимо, именно о них Вы спрашиваете). Максимальное число электронов на энергетических уровнях: 1-й - 2, 2-й - 8, 3-й - 18, 4-й и далее - 32. НА ВНЕШНЕМ ЭЛЕКТРОННОМ СЛОЕ АТОМА НЕ МОЖЕТ БЫТЬ БОЛЕЕ 8 ЭЛЕКТРОНОВ.
Общее число электронов на всех электронных слоях равно заряду ядра (порядковому номеру элемента). Число электронных слоев атома равно номеру периода, в котором расположен этот элемент. Заполнение нового электронного слоя начинается после того, как на предыдущем слое заполнены s- и p-орбитали.
d-орбитали предыдущего слоя заполняются после заполнения s-орбиталей следующего слоя, а уже после этих d-орбиталей заполняется наружный p-подуровень. f-орбитали заполняются только у лантаноидов и актиноидов (2 ряда по 14 элементов внизу таблицы Менделеева) ; заполняется f-подуровень третьего снаружи электронного слоя после того, как заполнился s-подуровень внешнего слоя (2 электрона) и 1 электрон на d-подуровне предыдущего слоя. После заполнения третьего снаружи f-подуровня продолжается заполнение второго снаружи d-подуровня (вставная декада) , а затем - заполняется р-подуровень внешнего слоя.
Например, ванадий V - элемент 5 группы 4 периода. У него заполнены 1 (2 электрона) и 2 (8 электронов) уровни, на 3 уровне - s- и p-подуровни (т. е. 8 электронов) , потом заполняется s-подуровень 4 слоя (2 электрона) , а затем - d-подуровень 3 слоя (3 электрона) , т. е. на 3 слое - 8 + 3 = 11 электронов, а электронная схема атома: V +23)2)8)11)2. + 23 - это заряд ядра (порядковый номер; 2 + 8 + 11 + 2 = 23 - число электронов равно порядковому номеру (это проверка). Как узнать число d-электронов: каждый период начинается 2 элементами, у которых заполняется наружный s-подуровень (в 4 периоде это - К и Са - элементы 1 и 2 группы) , далее у 10 элементов (вставная декада) заполняется предыдущий d-подуровень - по 1 электрону (в 4 периоде - от Sc до Zn). Считаете: ванадий находится в побочной подгруппе (т. е. d-элемент) , это 5-й по счету элемент 4 периода, у него 5 - 2 = 3 d-электрона на предыдущем (третьем) слое (т. е. он третий во вставной декаде) .
У элементов побочных подгрупп 1 и 6 групп наблюдается "проскок" 1 внешнего s-электрона на предыдущий d-подуровень: возникает энергетически более выгодное состояние, когда d-подуровень заполнен полностью или наполовину. Например, у меди Сu вместо...3d9 4s2 электронная конфигурация будет...3d10 4s1.