Влияние физических факторов на развитие микроорганизмов. Санитарная микробиология Влияние физических факторов среды на микроорганизмы

В естественной среде обитания и в случае искусственного культи­вирования микроорганизмов на них влияют многочисленные факто­ры, которые условно разделяют на физические, химические и биоло­гические.

Физические, химические и биологические факторы окружающей среды оказывают различное воздействие на микроорганизмы: бактери­цидное, приводящее к гибели клетки; бактериостатическое, подавля­ющее рост и размножение микроорганизмов, и мутагенное, приводя­щее к изменению наследственных свойств микробов.

К физическим факторам относят температуру; замораживание; вы­сушивание; давление; различные виды излучений; аэронизацию; уль­тразвук; электричество.

Микроорганизмы лишены механизмов, регулирующих температуру тела, поэтому их существование определяется температурой окружа­ющей среды. Для каждого вида микроорганизмов существует мини­мальная температура, ниже которой их рост не наблюдается; опти­мальная - при которой микроорганизмы растут с наибольшей ско­ростью и максимальная - выше которой роста не происходит. Данные три температурные точки называют кардинальными. Они весьма харак­терны для определенных видов и даже штаммов бактерий. Микроорга­низмы по их адаптации к определенным температурным условиям раз­деляют на следующие группы: психрофилы, мезофиллы, термофилы и экстремально-термофильные.

Психрофилы (от гр. psychros - холодный, phileo - люблю) - микро­организмы, для которых температурный минимум составляет 0 °С, оп­тимум - 15-20, максимум - 30-35 °С. Эти бактерии являются обита­телями холодных районов земного шара, горных ледников, пещер, воды колодцев и родников, сточных вод.

Для психрофилов характерна очень длительная лаг-фаза и неболь­шая скорость роста. Они могут вызывать порчу продуктов в холодиль­никах, погребах, ледниках. К психрофилам относят светящиеся бакте­рии, некоторые железобактерии, иерсинии, псевдомонады, возбудите­лей паратуберкулеза.

Мезофилы (от гр. mesos - средний, phileo - люблю) - микробы для которых температурный минимум составляет 10 °С, оптимум - 30-38, максимум - 40-45 °С. К мезофиллам относят большинство сапрофи-тов, условно-патогенных и патогенных микробов. Например, сальмо­неллы, эшерихии, возбудитель сибирской язвы и др.

Термофилы (от гр. termos - теплый, phileo - люблю) - теплолюбивые микроорганизмы, для которых температурный минимум составляет 35 °С, оптимум - 50-60, максимум - 70-75 °С. Эти микробы могут обитать в пищеварительном тракте животных, в почвах районов с жар­ким климатом, в горячих источниках. Термофилов обнаруживают во всех широтах. Развиваются они очень быстро. Эти микробы участвуют в процессах самонагревания навоза, мусора, зерна, комбикорма, сена. Термофилов, образующих тепло, принято называть термогенными. Под их влиянием происходит самонагревание в основном раститель­ной массы и выделение большого количества тепла. Тепло образуется вследствие разложения органических веществ, при этом выделяются горючие газы метан и водород, что часто приводит к самовозгоранию разлагающихся масс.

Для экстремально-термофильных бактерий температурный мини­мум колеблется в пределах 25-30 °С, оптимум - 50-60, максимум - 80-93 °С.

Возможность существования термофилов при высокой температуре объясняют следующими особенностями: высоким содержанием в кле­точных мембранах длинноцепочечных С 17 -С 19 насыщенных жирных кислот с разветвленными цепями; высокой термостабильностью бел­ков и ферментов; термостабильностью клеточных структур.

Постоянное место обитания термофильных бактерий - терминаль­ные (горячие) источники. В таких источниках могут развиваться эубактерии и архебактерии, аэробные и анаэробные, фототрофные, хемолитотрофные и гетеротрофные микроорганизмы, цианобактерии.

При воздействии на микробы низкой температуры они переходят в состояние анабиоза, в котором бактерии могут оставаться жизнеспо­собными в течение нескольких месяцев и даже лет. Например, листерии остаются жизнеспособными при -10 °С в течение трех лет. Микробы могут переносить температуру до-190 °С и даже-252 °С. Наибольшую опасность при замораживании представляет не сама низкая температу­ра, а кристаллы льда внутри клетки, которые могут повредить ее меха­нически. Низкая температура прерывает действие гнилостных и бродильных процессов. Недаром продукты хранят в холодильниках, пог­ребах, ледниках.

При промышленном производстве живых вакцин применяют метод лиофшшзации (от гр. lyo - растворять, phileo - люблю). При лиофилизации вода подвергается замораживанию, а затем происходит сублима­ция льда, т. е. его переход из твердого в парообразное состояние, жид­кая фаза выпадает.

Высокая температура губительно действует на микробы. В основе бактерицидного действия высокой температуры лежат угнетение фер­ментов, денатурация белков, нарушение осмотического барьера. Высо­кая температура применяется для стерилизации различных объектов.

Высушивание - обезвоживание отрицательно влияет на микробы. В высушенном состоянии они не могут расти и размножаться. Клетки переходят в анабиотическое состояние. Наиболее чувствительны к вы­сушиванию вегетативные формы микробов (особенно патогенные). Споровые формы микробов в высушенном состоянии не теряют своей жизнеспособности многие годы. Высушивание под вакуумом из замо­роженного состояния - лиофилизацию используют для получения ценных производственных и музейных штаммов культур микробов в су­хом виде, что позволяет хранить их без потери жизнеспособности и био­логических свойств в течение длительного срока (годами). Высушива­ние используют для консервирования овощей, фруктов, лекарственных трав, кормов.

Большое влияние на микроорганизмы оказывает гидростатическое и осмотическое давление. Бактерии, устойчивые к высокому давлению, называют барофильными (от гр. bams - тяжесть, phileo - люблю). На дне Тихого и Индийского океанов обитают бактерии, которые выдержива­ют давление до 11 370 Па. Большинство микробов при давлении выше 4900 Па погибают, так как давление вызывает денатурацию белков, ина­ктивацию ферментов, повышает диссоциацию. Повышенное давление в сочетании с высокой температурой используют в автоклавах с целью стерилизации различных материалов и лабораторной посуды.

Осмотическое давление определяется концентрацией растворенных в среде веществ. Оно играет важную роль в процессе питания. Бактерии питаются путем осмоса и диффузии. Осмотическое давление внутри клетки равно примерно давлению 10-20 %-го раствора сахарозы. В среде с низким осмотическим давлением вода поступает в клетку и наступает ее разрыв - плазмоптиз. В среде с высоким осмотическим давлением вода покидает клетку и происходит ее гибель - плазмолиз. Существуют микробы, способные расти и размножаться при высокой концентрации солей в среде - галофилы (любящие соль), например микрококки, сарцины, стафилококки. Их ферменты активны при повышенном содер­жании соли.

Различные виды излучений действуют на микробы бактерицидно. Степень бактерицидности зависит от вида излучения, его дозы, дли­тельности (экспозиции) воздействия на микроорганизмы. К излучени­ям относят видимый свет; невидимые инфракрасные лучи; рентгенов­ские лучи (а, в и y иуизлучения); космические лучи; невидимые ультра­фиолетовые лучи.

Видимый свет отрицательно действует на микроорганизмы, поэтому микробы выращивают на питательных средах в полной темноте в тер­мостатах. Прямые солнечные лучи губительно действуют на все виды микробов, за исключением пурпурных и зеленых серобактерий. Свет вызывает образование в клетке гидроксильных радикалов, которые и яв­ляются причиной ее гибели. Сапрофиты более устойчивы к свету, так как они эволюционно адаптированы к нему. Патогенные микробы весьма чувствительны к свету, что имеет гигиеническое значение. Уль­трафиолетовые лучи высокобактерицидны, они подавляют реплика­цию ДНК и РНК. В качестве источника ультрафиолетовых лучей слу­жат ртутно-кварцевые (ПРК) и бактерицидные (БУВ) лампы. Ультра­фиолетовые лучи используют для санации воздуха в животноводческих помещениях, стерилизации боксов в биологической промышленности, научно-исследовательских институтах, медучреждениях, ветлабораториях.

Из рентгеновских лучей наиболее бактерицидны улучи. Они пора­жают генетический аппарат, что приводит к гибели клетки. Эти лучи применяют для стерилизации хирургических инструментов, перевязоч­ного материала. Кроме того, их используют для холодной стерилиза­ции, т. е. обработки биопрепаратов. Холодная стерилизация губительно действует на микробные клетки, но не снижает качества препаратов.

Электроток ультравысокой частоты приводит в колебание молекулы всех ингредиентов клетки, происходит нагревание всей массы микро­бов, наблюдаются необратимые деструктивные изменения, что вызы­вает гибель микробов.

Жизнедеятельность микробов находится в зависимости от окружающей среды. Создавая те или иные условия в среде, где развиваются микробы, можно способствовать развитию полезных и подавлять жизнедеятельность вредных микробов.

Основными факторами, влияющими на жизнедеятельность микробов являются:

1. Температура. Все микробы имеют максимальную, оптимальную и минимальную температуру своего развития. Оптимальная температура для большинства микробов 25-35 °С. Поэтому продукты в этих условиях быстро портятся.

Минимальный температурный предел от -6 до – 20 °С. Но при такой температуре микробы не гибнут, а лишь замедляют свое развитие. При разморозке вновь начинают свою деятельность.

Максимальная температура (45 – 50 °С) также приостанавливает размножение микробов. Дальнейшее повышение ведет к гибели.

2. Влажность. Повышенная влажность увеличивает количество растворимых питательных веществ, следовательно, способствует питанию и развитию микробов. Поэтому пищевые продукты, содержащие большое количество влаги (молоко, мясо, рыба, овощи, плоды), быстро портятся. Поэтому надежным способом сохранения продуктов от порчи является сушка.

3. Свет. Прямой солнечный луч губит микробы, в том числе и болезнетворные. Губительны ультрафиолетовые лучи солнца и специальных ламп БУВ, используемых для дизенфекции воды, воздуха.

4. Химические вещества. Многие химические соединения губительно действуют на микробы и используются для их уничтожения. Так хлорную известь применяют для дизенфекции рук.

5. Биологические факторы. Микробы в процессе жизнедеятельности могут влиять друг на друга, способствуя развитию или угнетению. Многие бактерии, плесневелые грибы выделяют в окружающую среду вещества – антибиотики, губительно действующие на развитие других микробов. Другими веществами, близкими к антибиотикам по характеру действия на микробы, являются фитонциды. Это вещества, выделяемые многими растениями (луком, чесноком, хреном, цитрусовыми), убивают болезнетворные микробы дизентерии, гнилостную палочку.

Распространение микробов в природе.

Микробы широко распространены в природе: в почве, в воде, воздухе.

Самой благоприятной средой для развития микробов является почва, в 1 г которой находится до нескольких миллиардов микробов. Развитию микробов в почве способствует имеющиеся в ней питательные вещества, постоянная влажность, температура, отсутствие солнечного света. Больше всего микробов содержится на глубине от 1 до 30 см. В песчаной почве их меньше, чем в черноземе.

Для некоторых микроорганизмов вода является естественной средой обитания, особенно в открытых водоемах: реках, морях, озерах. Со сточными водами могут попадать болезнетворные микробы. Такую воду следует подвергать тщательной очистке – отстаивать, фильтровать, озонировать, обрабатывать ультрафиолетовыми лучами.

Воздух – неблагоприятная среда для жизни микроорганизмов и чистота его зависит от степени запыленности и загрязнения выбросами промышленных предприятий. Воздух чище зимой, чем летом; над океанами и морями чище, чем над сушей; над лесными массивами чище, чем над распаханной землей, в сельской местности чище, чем в городе.

Микроорганизмы подвержены постоянному воздействию факторов внешней среды. Неблагоприятные воздействия могут приводить к гибели микроорганизмов, то есть оказывать микробицидный эффект, либо подавлять размножение микробов, оказывая статическое действие. Некоторые воздействия оказывают избирательный эффект на отдельные виды, другие — проявляют широкий спектр активности. На основе этого созданы методы подавления жизнедеятельности микробов, которые используются в медицине, быту, сельском хозяйстве и др.

1. ВЛИЯНИЕ ФИЗИЧЕСКИХ ФАКТОРОВ НА МИКРООРГАНИЗМЫ

Температура .
По отношению к температурным условиям микроорганизмы разделяют на термофильные, психрофильные и мезофильные.

  • Психрофильные виды (холодолюбивые) растут в диапазоне температур 0-10°С, максимальная зона задержки роста 20-30°С. К ним относит большинство сапрофитов, обитающих в почве, пресной и морской воде. Но есть некоторые виды, например, иерсинии, психрофильные варианты клебсиелл, псевдомонад, вызывающие заболевания у человека.

Высокая температура вызывает коагуляцию структурных белков и ферментов микроорганизмов. Большинство вегетативных форм гибнет при температуре 60°С в течение 30 мин, а при 80-100°С – через 1 мин. Споры бактерий устойчивы к температуре 100°С, гибнут при 130°С и более длительной экспозиции (до 2 ч.).
Для сохранения жизнеспособности относительно благоприятны низкие температуры (например, ниже 0°С), безвредные для большинства микробов. Бактерии выживают при температуре ниже –100°С; споры бактерий и вирусы годами сохраняются в жидком азоте (до –250°С).

Влажность .
При относительной влажности окружающей среды ниже 30% жизнедеятельность большинства бактерий прекращается. Время их отмирания при высушивании различно (например, холерный вибрион – за 2 суток, а микобактерии – за 90 суток). Поэтому высушивание не используют как метод элиминации микробов с субстратов. Особой устойчивостью обладают споры бактерий.
Широко распространено искусственное высушивание микроорганизмов, или лиофилизация . Метод включает быстрое замораживание с последующим высушиванием под низким (вакуумом) давлением (сухая возгонка). Лиофильную сушку применяют для сохранения иммунобиологических препаратов (вакцин, сывороток), а также для консервирования и длительного сохранения культур микроорганизмов.
Влияние концентрации растворов на рост микроорганизмов опосредовано изменением активности воды как меры доступной для организма воды. И если содержание солей вне клетки окажется выше их концентрации в клетке, то вода будет выходить из клетки. Угнетение патогенных бактерий хлористым натрием обычно начинается при его концентрации около 3%.

Излучения.
Солнечный свет губительно действует на микроорганизмы, исключением являются фототрофные виды. Наибольший микробицидный эффект оказывает коротковолновые УФ-лучи. Энергию излучения используют для дезинфекции, а также для стерилизации термолабильных материалов.
УФ-лучи (в первую очередь коротковолновые, т.е. с длиной волны 250-270 нм) действуют на нуклеиновые кислоты. Микробицидное действие основано на разрыве водородных связей и образовании в молекуле ДНК димеров тимидина, приводящем к появлению нежизнеспособных мутантов. Применение УФ-излучения для стерилизации ограничено его низкой проницаемостью и высокой поглотительной активностью воды и стекла.
Рентгеновское и g-излучение в больших дозах также вызывает гибель микробов. Облучение вызывает образование свободных радикалов, разрушающих нуклеиновые кислоты и белки с последующей гибелью микробных клеток. Применяют для стерилизации бактериологических препаратов, изделий из пластмасс.
Микроволновое излучение применяют для быстрой повторной стерилизации длительно хранящихся сред. Стерилизующий эффект достигается быстрым подъемом температуры.

Ультразвук .
Определенные частоты ультразвука при искусственном воздействии способны вызывать деполимеризацию органелл микробных клеток, под действием ультразвука газы, находящиеся в жидкой среде цитоплазмы, активируются и внутри клетки возникает высокое давление (до 10 000 атм). Это приводит к разрыву клеточной оболочки и гибели клетки. Ультразвук используют для стерилизации пищевых продуктов (молока, фруктовых соков), питьевой воды.

Давление .
Бактерии относительно мало чувствительны к изменению гидростатического давления. Повышение давления до некоторого предела не сказывается на скорости роста обычных наземных бактерий, но в конце концов начинает препятствовать нормальному росту и делению.

Влияние факторов внешней среды на микроорганизмы

Некоторые виды бактерий выдерживают давление до 3 000 – 5 000 атм, а бактериальные споры — даже 20 000 атм.
В условиях глубокого вакуума субстрат высыхает и жизнь невозможна.

Фильтрование .

2. ДЕЙСТВИЕ ХИМИЧЕСКИХ ФАКТОРОВ НА МИКРООРГАНИЗМЫ

Способность ряда химических веществ подавлять жизнедеятельность микроорганизмов зависит отконцентрации химических веществ и времени контакта с микробом. Дезинфектанты и антисептики дают неспецифический микробицидный эффект; химиотерапевтические средства проявляют избирательное противомикробное действие.

По механизму действия противомикробные вещества разделяются на такие группы:
а) деполимеризующие пептидогликан клеточной стенки
б) повышающие проницаемость клеточной мембраны
в) блокирующие те или иные биохимические реакции
г) денатурирующие ферменты
д) окисляющие метаболиты и ферменты микроорганизмов
е) растворяющие липопротеиновые структуры
ж) повреждающие генетический аппарат или блокирующие его функции.

У микроорганизмов химической деструкции прежде всего подвергаются белки и липиды цитоплазматической мембраны, белковые молекулы жгутиков, фимбрий, секс-пили, порины клеточной стенки грамположительных бактерий, связывающие белки периплазмы, протеиновые капсулы, экзотоксины, ферменты-токсины и ферменты питания. Деструкция гетерогенных полимеров (белки, полиэфиры и др.) происходит как при действии окислителей, так и при действии гидролизующих и детергентных антисептиков (кислоты, щелочи, соли двух- и поливалентных металлов и др.).

3. ВЛИЯНИЕ БИОЛОГИЧЕСКИХ ФАКТОРОВ НА МИКРООРГАНИЗМЫ

К биологическим средствам могут быть отнесены препараты, содержащие живых особей -бактериофагов и бактерий, обладающих выраженной конкурентной активностью по отношению к патогенным и условно-патогенным для человека и животных видам микробов. Они вводятся в организм в жизнеспособном состоянии. Фаги и антагонисты оказывают прямое повреждающее действие на патогенных и условно-патогенных микробов; изготовленные из них лекарственные препараты предназначены для местного применения, для них характерна специфичность действия на микроорганизмы и безвредность для пациента; целью их внесения в организм человека и животных является лечение или профилактика инфекционных заболеваний. По механизму действия они близки к химическим антисептикам.
Необходимо также помнить и о молочно-кислых бактериях, которые вызывают процесс молочно-кислого брожения. Некоторые молочно-кислые бактерии способны синтезировать антибиотики и с их помощью подавлять развитие болезнетворных микробов.
Препараты, содержащие бактерии (эубиотики или пробиотики): колибактерин, лактобактерин, бифидумбактерин, бификол, микрококкобактерин, линекс, бактисубтил и другие.
Препараты, содержащие бактериофаги: бактериофаг брюшнотифозный, бактериофаг дизентерийный, бактериофаг сальмонеллезный, бактериофаг коли-протейный, бактериофаг стафилококковый, бактериофаг стрептококковый, бактериофаг пиоцианеус, бактериофаг синегнойный, бактериофаг клебсиеллезный, пиофаг комбинированный и другие.

ПОСМОТРЕТЬ ЕЩЕ:

Жизнедеятельность микроорганизмов зависит от условий существования. Благоприятными условиями их существования является влажность, тепло, наличие питательных веществ. Тормозят развитие микроорганизмов высушивание, кислая среда, низкие температуры, отсутствие питательных веществ и др. Искусственно регулируя условия существования микробов, можно прекратить их размножение или уничтожить их.

Большинство пищевых продуктов по химическому составу является благоприятной средой для существования микробов. Поэтому хранить пищевые продукты можно только при неблагоприятных условиях для микроорганизмов. Говоря о влиянии физических факторов окружающей среды на микроорганизмы, подразумевают условия внешней среды, влияющие на их развитие и делят таковые на три основные группы: физические, химические и биологические. К физическим условиям (факторам) относятся: температура, влажность среды, концентрация веществ, растворенных в среде; излучение.

Влияние температуры на микроорганизмы.

Развитие всех микроорганизмов возможно при определенной температуре. Известны микроорганизмы, способные существовать при низких (-8°С и ниже) и при повышенных температурных условиях, например, обитатели горячих источников поддерживают жизнедеятельность при температуре 80-95°С. Большинство микробов предпочитает температурные пределы 15-35°С. Различают:

  • оптимальную, наиболее благоприятную для развития температуру;
  • максимальную, при которой прекращается развитие микробов данного вида;
  • минимальную, ниже которой микробы прекращают развитие.

По отношению к уровню температуры микроорганизмы разделяют на три группы:

  • психрофиты – хорошо растут при пониженных температурах,
  • мезофиллы – нормально существуют при средних температурах,
  • термофилы – существуют при постоянно высоких температурах.

Микробы сравнительно быстро приспосабливаются к значительным изменениям температуры. Поэтому незначительное снижение или повышение уровня температуры не гарантирует прекращения развития микроорганизмов.

Влияние высоких температур.

Температуры, значительно превышающие максимальные, вызывают гибель микроорганизмов. В воде большинство вегетативных форм бактерий при нагревании до 60°С погибают за час; до 70°С - за 10-15 минут, до 100°С - за несколько секунд. В воздухе гибель микроорганизмов наступает при значительно более высокой температуре - до 170°С и выше в течение 1-2 часов.

Влияние условий внешней среды на микроорганизмы

Споровые формы бактерий значительно устойчивее к нагреванию, они могут выдерживать кипячение в течение 4-5 часов.

Методы пастеризации и стерилизации основаны на свойстве микробов погибать под действием высоких температур. Пастеризация - осуществляется при температуре 60-90°С, при этом погибают вегетативные формы клеток, а споровые остаются жизнеспособными. Поэтому пастеризованные продукты следует быстро охлаждать и хранить в условиях охлаждения. Стерилизация - это полное уничтожение всех форм микроорганизмов, включая споровые. Стерилизацию осуществляют при температуре 110-120°С и повышенном давлении.

Однако споры не погибают мгновенно. Даже при 120°С гибель их наступает через 20-30 минут. Стерилизуют пищевые консервы, некоторые медицинские материалы, субстраты, на которых выращивают микроорганизмы в лабораториях. Эффект стерилизации зависит от количественного и качественного состава микрофлоры объекта стерилизации, его химического состава, консистенции, объема, массы и др.

Влияние низких температур.

Чаще всего действие низких температур связано не с гибелью микроорганизмов, а с торможением и прекращением их развития. Низкую температуру микроорганизмы переносят значительно лучше. Многие болезнетворные микробы, попадающие в окружающую среду, способны переносить суровые зимы, не теряя болезнетворности. Наиболее негативно на развитие микроорганизмов влияет температура, при которой замерзает содержимое клетки.

Тормозящее действие низких температур на микробы используют для хранения различных продуктов в охлажденном виде при температуре 0-4°С, и замороженном – при температуре - 6-20°С и ниже. Действие низких температур в замороженных продуктах усиливает влияние повышенного осмотического давления. Поскольку большая часть воды перешла в лед, в оставшейся жидкой части воды оказались все растворенные вещества, содержавшиеся в массе продукта. Это вызывает повышенное осмотическое давление, которое, в свою очередь, тормозит развитие микробов.

Замораживание используют для хранения мяса, рыбы, плодов, овощей полуфабрикатов, кулинарных изделий, готовых блюд и др. Прекращение развития микробов действует только до тех пор, пока продолжается действие низкой температуры. При повышении температуры начинается бурное развитие и размножение микробов, что вызывает порчу пищевых продуктов.

Следовательно, низкая температура только замедляет биохимические процессы, не имея стерилизующего эффекта. Многократное замораживание одних и тех же продуктов способствует быстрому приспособлению микробов к низким температурам и усиливает их жизнеспособность. Поэтому надо предотвращать колебания температуры во время хранения продуктов.

Физические факторы.

1. Температура.

По отношению к температурным условиям микроорганизмы разделяют на:

  • Термофильные виды. Зона оптимального роста равна 50-60°С, верхняя зона задержки роста — 75°С. Термофилы обитают в горячих источниках, участвуют в процессах самонагревания навоза, зерна, сена.
  • Психрофильные виды (холодолюбивые) растут в диапазоне температур 0-10°С, максимальная зона задержки роста 20-30°С. К ним относит большинство сапрофитов, обитающих в почве, пресной и морской воде.
  • Мезофильные виды лучше растут в пределах 20-40°С; максимальная 43-45°С, минимальная 15-20°С. В окружающей среде могут переживать, но обычно не размножаются. К ним относится большинство патогенных и условно-патогенных микроорганизмов.

Бактерии выживают при температуре ниже –100°С; споры бактерий и вирусы годами сохраняются в жидком азоте (до –250°С).

2. Влажность.

2.При относительной влажности окружающей среды ниже 30% жизнедеятельность большинства бактерий прекращается. Время их отмирания при высушивании различно (например, холерный вибрион – за 2 суток, а микобактерии – за 90 суток). Поэтому высушивание не используют как метод элиминации микробов с субстратов. Особой устойчивостью обладают споры бактерий.

3. Излучения.

3.- Солнечный свет губительно действует на микроорганизмы, исключением являются фототрофные виды. Наибольший микробицидный эффект оказывает коротковолновые УФ-лучи. Энергию излучения используют для дезинфекции, а также для стерилизации термолабильных материалов.

3.- УФ-лучи действуют на нуклеиновые кислоты. Применение УФ-излучения для стерилизации ограничено его низкой проницаемостью и высокой поглотительной активностью воды и стекла.

3.- Рентгеновское и g-излучение в больших дозах также вызывает гибель микробов. Применяют для стерилизации бактериологических препаратов, изделий из пластмасс.

3.- Микроволновое излучение применяют для быстрой повторной стерилизации длительно хранящихся сред.

4. Ультразвук используют для стерилизации пищевых продуктов (молока, фруктовых соков), питьевой воды.

5. Давление. Бактерии относительно малочувствительны к изменению гидростатического давления.

6. Фильтрование.

Для удаления микроорганизмов применяют различные материалы (мелкопористое стекло, целлюлоза, коалин); они обеспечивают эффективную элиминацию микроорганизмов из жидкостей и газов. Фильтрацию применяют для стерилизации жидкостей, чувствительных к температурным воздействиям, разделения микробов и их метаболитов (экзотоксинов, ферментов), а также для выделения вирусов.

Химические факторы.

Способность ряда химических веществ подавлять жизнедеятельность микроорганизмов зависит от концентрации химических веществ и времени контакта с микробом. Дезинфектанты и антисептики дают неспецифический микробицидный эффект; химиотерапевтические средства проявляют избирательное противомикробное действие.

Биологические факторы.

К биологическим средствам могут быть отнесены препараты, содержащие живых особей — бактериофагов и бактерий, обладающих выраженной конкурентной активностью по отношению к патогенным и условно-патогенным для человека и животных видам микробов. Они вводятся в организм в жизнеспособном состоянии.

2. Антигены. Свойства антигенов.

Антиген – это генетически чужеродный агент для макроорганизма, вызываемый в нем иммунологические реакции, направленные на его уничтожение, устранение.

Антигенами могут являться грибы, бактерии, вирусы, простейшие, клетки животных, растений, продукты жизнедеятельности.

Свойства антигенов:

1) антигенность

2) специфичность

3) иммуногенность

Антигенность – это способность антигена индуцировать в организме иммунный ответ – выработка антител.

Специфичность – способность антигена избирательно реагировать со строго определенными антителами. (Воздействие происходит не со всей молекулой, а с небольшим участком – антигенная детерминанта или эпитоп).

Иммуногенность – это способность антигена вызывать иммунную защиту макроорганизма.

Степень иммуногенности зависит от антигена (чужеродность, природа, химический состав, молекулярная масса, структура, растворимость).

По своему генетическому происхождению выделяют три основные типа антигенов.

1. Аутоантигены.

Вызывают аутоиммунные реакции. То есть это антигены собственного организма. Они могут быть первичными, отделенными от иммунной системы гистогематическими барьерами и вызывающими иммунный ответ после их повреждения, и вторичными, вызывающими на себя иммунный ответ только после изменения своих свойств в результате тех или иных патологических процессов. К первичным аутоантигенам относят хрусталик глаза, ткань головного мозга, коллоид щитовидной железы, тестикулярную ткань.

2. Изоантигены.

Это различные антигены, различающиеся между особями одного биологического вида. Так, к изоантигенам относят группы крови (система АВО) человека.

3. Ксеноантигены.

К ним относятся антигены, различающиеся между представителями различных биологических видов, например антигены, различающиеся между человеком и лошадью.

Иммуногены или полные антигены — это вещества, вызывающие полноценный иммунный ответ и обладающие свойствами: иммуногенностью, антигенностью и специфичностью.

Иммуногенами являются биополимеры — белки, их комплексы с углеводами (гликопротеиды), а также сложные полисахариды, липополисахариды с высокой молекулярной массой. Чем дальше от человека в эволюционном отношении отстоят организмы, тем бoльшую иммуногенность проявляют их белки.

Гаптены — неполные антигены, относительно простые вещества, способные участвовать в иммунологических взаимодействиях, но не способные самостоятельно индуцировать иммунный ответ. Гаптены обладают свойствами антигенностью и специфичностью, но не обладают иммуногенностью.

Гаптены после присоединения к крупным, обычно белковым молекулам (носителям), могут приобретать свойства полного антигена.

3. Хромосомные болезни – синдром Дауна, синдром Эдварса, синдром Патау.

Хромосомный комплекс нормальных соматических клеток современного человека состоит из 46 хромосом (2n = 46). В клетках индивидуума женского пола кроме 44 аутосом имеется пара половых хромосом ХХ, а у лиц мужского пола — ХУ. Принятые формулы для изображения: 46, ХХ; 46, ХУ.

Хромосомные болезни — это большая группа врожденных патологических состояний с множественными врожденными пороками развития, причиной которых является изменение количества или структуры хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3-5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.

Все хромосомные болезни принято делить на две группы:

1) аномалии числа хромосом. В эту группу входит три подгруппы:

— болезни, причиной которых является нарушение числа хромосом,

— болезни, связанные с увеличением или уменьшением числа половых Х и Y-хромосом

— болезни, обусловленные полиплоидией — кратным увеличением гаплоидного набора хромосом

2) нарушения структуры (аберрациями) хромосом. Их причинами являются:

— транслокации — обменные перестройки между негомологичными хромосомами

— делеции — потери участка хромосомы

— инверсии — повороты участка хромосомы на 180°

— дупликации — удвоения участка хромосомы

— изохромосомия — хромосомы с повторяющимися генетическим материалом в обоих плечах

— возникновение кольцевых хромосом — соединение двух концевых делеций в обоих плечах хромосомы

Болезни, обусловленные нарушением числа аутосом

Синдром Дауна - трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики (узоров на коже ладонной стороны кистей и стоп человека).

Лекція №7 Влияние факторов внешней среды на микроорганизмы.

Синдром получил название в честь английского врача Джона Дауна впервые описавшего его в 1866 году. Связь между происхождением врождённого синдрома и изменением количества хромосом была выявлена только в 1959 году французским генетиком Жеромом Леженом. Частота рождений детей с синдромом Дауна 1 на 800 или 1000. Синдром Дауна встречается во всех этнических группах и среди всех экономических классов.Возраст матери влияет на шансы зачатия ребёнка с синдромом Дауна. Если матери от 20 до 24 лет, вероятность этого 1 к 1562, от 35 до 39 лет — 1 к 214, а в возрасте старше 45, вероятность 1 к 19. Трисомия происходит из-за того, что во время мейоза хромосомы не расходятся. При слиянии с гаметой противоположного пола у эмбриона образуется 47 хромосом, а не 46, как без трисомии.

Синдром Патау - трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто - полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года. Встречается с частотой 1:7000-1:14000. Оставшиеся в живых страдают глубокой идиотией.

Синдром Эдвардса - трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца. Популяционная частота примерно 1:7000. Дети с трисомией 18 чаще рождаются у пожилых матерей, взаимосвязь с возрастом матери менее выражена, чем в случаях трисомии хромосомы 21 и 13. Для женщин старше 45 лет риск родить больного ребёнка составляет 0,7 %. Девочки с синдромом Эдвардса рождаются в три раза чаще мальчиков.

Дата публикования: 2015-02-03; Прочитано: 591 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.003 с)…

Температурные диапазоны гибели микроорганизмов

Споры бактерий гораздо устойчивей к высоким температурам, чем вегетативные формы бактерий. Например, споры бацилл си-бирской язвы выдерживают кипячение в течение 2 часов.

Все микроорганизмы, включая и споровые, погибают при тем-пературе 165-170°С в течение 1 часа.

Действие высоких температур на микроорганизмы положено в основу стерилизации.

Тепловые методы обработки пищевых продуктов

К тепловым методам обработки пищевых продуктов относятся пастеризация и стерилизация. Пастеризация- это способ уничтожения микроорганизмов в жидкостях или пищевых продуктах однократным нагреванием до температуры ниже 100 °С (чаще всего до 60-70 °С) с выдержкой 15-30 мин. Пастеризация применяется для консервирования молока и других продуктов. Стерилизация осуществляется под действием высоких температур, нагретым паром под давлением в автоклавах при температуре 110-120°С или горячим воздухом в сушильном шкафу при температуре 150-160 °С. При стерилизации происходит полное освобождение продуктов от микроорганизмов и спор в результате их гибели.

Отношение микроорганизмов к низким температурам

Низкие температуры широко применяются в практике хранения продовольственных товаров. Продукты хранят в охлажденном (от 10 до 2°С) и замороженном (от 15 до 30°С) состоянии.

Сроки хранения охлажденных продуктов не могут быть продолжительными, так как развитие на них микроорганизмов не прекращается, а только замедляется.

Замороженные продукты сохраняются более продолжительное время, поскольку развитие на них микроорганизмов исключено. Однако после оттаивания такие продукты могут быстро испортиться вследствие интенсивного размножения сохранивших жизнеспособность микроорганизмов.

Высушивание

Для нормальной жизнедеятельности микроор-ганизмов нужна вода. Высушивание приводит к обезвоживанию цитоплазмы и нарушается целостность цитоплазматической мем-браны, что ведет к гибели клетки.

Некоторые микроорганизмы (многие виды кокков) под влия-нием высушивания погибают уже через несколько минут.

Более устойчивыми к высушиванию являются возбудители ту-беркулеза, которые могут сохранять свою жизнеспособность до 9 месяцев, а также капсульные формы бактерий.

Особенно устойчивыми к высушиванию являются споры. На-пример, споры возбудителя сибирской язвы могут сохраняться в почве более 100 лет.

Для хранения микроорганизмов в музеях микробных культур и изготовления сухих вакцинных препаратов из бактерий применя-ется метод лиофильной сушки.

Сущность метода состоит в том, что в аппаратах для лиофиль-ной сушки – лиофилизаторах микроорганизмы сначала заморажи-вают, а потом высушивают при положительной температуре в ус-ловиях вакуума. При этом цитоплазма бактерий замерзает и пре-вращается в лед, а потом этот лед испаряется и клетка остается жива (переход воды из замороженного состояния в газообразное, минуя жидкую фазу — сублимация ).

Замороженные бактерии (I этап лиофильного высушивания)

Образование внеклеточного (а)и внутриклеточного (б) льда при лиофильном высушивании бактерий

При правильном лиофильном высушивании микробные клетки переходят в состояние анабиоза и сохраняют свои биологические свойства в течение нескольких лет.

Лифильно высушенные живая (а)и погибшая (б)бактерии

Если режим лиофильного высушивания не соблюдался (а для разных видов бактерий он различен), то клеточная стенка у бакте-рий разрывается и они гибнут.

Лучистая энергия

Существуют разные формы лучистой энер-гии, характеризующиеся различными свойствами, силой и харак-тером действия на микроорганизмы.

В природе бактериальные клетки постоянно подвергаются воз-действию солнечной радиации.

Прямые солнечные лучи губительно действуют на микроорга-низмы. Это относится к ультрафиолетовому спектру солнечного света (УФ-лучи).

Вследствие присущей УФ-лучам высокой химической и биоло-гической активности, они вызывают у микроорганизмов инактива-цию ферментов, коагуляцию белков, разрушают ДНК в результате чего наступает гибель клетки. При этом обеззараживается только поверхность облученных объектов из-за низкой проникающей спо-собности этих лучей.

Патогенные бактерии более чувствительны к действию УФ-лу-чей, чем сапрофиты, поэтому в бактериологической лаборатории микроорганизмы выращивают и хранят в темноте.

Опыт Бухнера показывает, насколько УФ-лучи губительно дей-ствуют на бактерии: чашку Петри с плотной средой засевают сплошным газоном. Часть посева накрывают бумагой, и ставят чашку Петри на солнце, а затем через некоторое время (15-30 мин) ее ставят в термостат.

Прорастают только те микроорганизмы, которые находились под бумагой. Поэтому значение солнечного света для обеззараживания ок-ружающей среды очень велико.

Бактерицидные лампы

Бактерицидное действие УФ-лучей используют для стерилиза-ции закрытых помещений: операционных, микробиологических боксов, учебных аудиторий кафедры микробиологии. Для этого применяют бактерицидные лампы ультрафиолетового излучения с длиной волны 200-400 нм.

На микроорганизмы оказывают влияние и другие виды лучи-стой энергии — это рентгеновское излучение, α-, β- и γ-лучи, кото-рые оказывают губительное действие на микроорганизмы только в больших дозах.

Влияние условий внешней среды на микроорганизмы.

Эти лучи разрушают ДНК клетки. В последние годы радиационным методом стерилизуют изделия для одноразо-вого использования — шприцы, шовный материал, чашки Петри.

Малые дозы излучений, наоборот, могут стимулировать рост микроорганизмов и вызывать у них мутации.

СВЧ-энергия . Вызывая нагрев среды, СВЧ-энергия действует губительно на микроорганизмы, при этом происходит повреждение клетки.

СВЧ-энергия влияет на генетические признаки микроорганиз-мов, на изменение интенсивности деления клетки, активность не-которых ферментов, гемолитические свойства.

Ионизирующая радиация. Характерной особенностью этих из-лучений является их способность вызывать процесс ионизации.

Ультразвук

Ультразвук . Неся с собой большой запас энергии, ультразву-ковые волны вызывают ряд физических, химических и биологиче-ских явлений. С помощью ультразвуковых (УЗ) волн можно вы-звать инактивацию ферментов, витаминов, токсинов, разрушить разнообразные материалы и вещества, многоклеточные и одно-клеточные организмы.

Ультразвуковые волны при частоте колебания 1-1,3 мГц в те-чение 10 мин оказывает бактерицидный эффект на клетки микро-организмов. Ультразвук способствует разрыву клеточных стенок и мембран, повреждению флагеллина у подвижных форм микроор-ганизмов. Влияние ультразвука основано на механическом разру-шении микроорганизмов в результате возникновения высокого давления внутри клетки, разжижения и вспенивания цитоплазмы или на появлении гидроксильных радикалов и атомарного кисло-рода в водной среде цитоплазмы.

Ультразвук используют для разрушения микроорганизмов с целью получения растворимых антигенов при производстве субъ-единичных вакцин и стерилизации продуктов: молока, фруктовых соков.

Непременным условием жизнедеятельности микроорганизмов является наличие в среде капельножидкой воды. В высушенном состоянии микробы остаются бездеятельными, хотя и могут сохранить свою жизнеспособность. В высушенном состоянии микробы не могут расти и размножаться, так как нарушается осмотический характер процесса питания: при отсутствии воды, необходимой для растворения питательных веществ, они не могут проникнуть внутрь микробной клетки. Минимум влажности, при котором возможно развитие бактерий, 25-30%. Менее требовательны к влаге плесневые грибы. Они развиваются на субстратах и при 10-15% влажности (особенно пеницилловые и аспергилловые плесени).

Для развития микробов важно не общее содержание влаги, а доступность ее для процесса питания. Если вода химически связана с субстратом (содержится, например, в кристаллогидратах, где ее количество строго определенное) и может быть удалена либо химическим воздействием, либо прокаливанием, то такая вода для микробов недосягаема: химически связанная вода не может служить растворителем питательных веществ. Микроорганизмам, как уже указывалось, необходима капельножидкая вода, удерживающаяся в продуктах силами смачивания и капиллярности.

Содержание капельножидкой воды в пищевых продуктах зависит от свойств продукта и окружающей температуры. Чем выше температура окружающего воздуха, тем более влажным должен быть субстрат, чтобы на его поверхности могли развиваться микроорганизмы, и наоборот. Высушивая продукт, мы получаем возможность предохранить его от микробного воздействия; поэтому сушка является наиболее простым методом консервирования.

Различные микроорганизмы по-разному переносят высушивание. Одни микробы весьма чувствительны к влаге и при высушивании сравнительно быстро погибают. К этой группе относятся, например, уксуснокислые бактерии, нитрифицирующие и азотфиксирующие почвенные бактерии, некоторые патогенные микроорганизмы - холерный вибрион, чумная палочка - и некоторые гнилостные микробы. Другие же микроорганизмы могут сохраняться в высушенном состоянии довольно продолжительное время, а третьи в высушенном состоянии сохраняют свою жизнеспособность даже десятки лет. Для сохранения жизнеспособности микробов при высушивании немаловажное значение имеют технические условия высушивания. Установлено, что особенно долго микроорганизмы сохраняют жизнеспособность в том случае, если они высушиваются вместе с питательным субстратом. Есть данные о том, что в высушенных комочках земли жизнеспособность спор сохраняется до 93 лет. Молочнокислые бактерии в высушенном состоянии не теряют способности к развитию в течение 10 лет, что позволяет применять их «сухие закваски» при изготовлении . Очень долго (2 года и более) сохраняют свою жизнеспособность многие клетки в высушенных хлебных дрожжах.

В настоящее время широко применяется метод сохранения производственных культур микроорганизмов и вакцин путем быстрого высушивания их в вакууме в средах специального состава.

Сушка овощей и плодов осуществляется в широком производственном масштабе и имеет большое народнохозяйственное значение. Особенно большое распространение получила промышленная сушка овощей: картофеля, капусты, свеклы, моркови, белых кореньев, лука, зеленого горошка, грибов. Из плодов и ягод сушат виноград, абрикосы, семечковые плоды и сливы. Меньшее значение имеют сушеные продукты животного происхождения: яичный порошок, сухое молоко, сушеное мясо, вяленая рыба. Содержание влаги при сушке для различных видов фруктов практически необходимо снизить до 15-20%, для овощей - до 12-14%. Высушивать другие продукты можно и до меньшего содержания влаги - 4-5%.

В зависимости от скорости и условий высушивания, характера высушиваемого сырья и вида микроорганизмов на поверхности сушеных продуктов могут остаться самые разнообразные зародыши микробов. В сушеной капусте, например, находили до 15 млн. зародышей на 1 г продукта, а в яичном порошке, полученном на американских заводах, еще больше - от 18 до 20 млн. зародышей на 1 г.

Обычно микрофлора сушеных фруктов и овощей представлена спорами плесневых грибов Aspergillus, Penicillium, но могут встречаться и бактерии кишечнотифозной группы Escherichia coli, Salmonella enteritidis, S. gartneri и некоторые другие. Наличие в сушеных продуктах (а также концентратах) разнообразных микробов приводит к тому, что небольшое, даже местное, увлажнение этих продуктов влечет за собой быстрое развитие микробов, чаще всего плесневых грибов, реже развитие бактерий и порчу продуктов. Поэтому хранить сушеные фрукты, овощи, концентраты следует в герметической упаковке во избежание поглощения влаги из воздуха.

Действие температуры

Температура среды является мощным физическим фактором, определяющим не только интенсивность развития, но и возможность существования микроорганизмов. Для каждого микроба существует определенный температурный интервал, вне границ которого данный микроорганизм погибает.

Все микроорганизмы в зависимости от положения на температурной шкале оптимума их роста и развития принято делить на три группы: психрофилы, мезофилы, термофилы.

Психрофильные микроорганизмы (от греческого psychria - холод, phileo - люблю) - холодолюбивые микроорганизмы, в основном встречающиеся в северных морях, в почвах тундры и т.д. В процессе эволюции эти микроорганизмы приспособились к жизни при низких температурах. Оптимум их развития лежит между 10 и 20°С, максимум равен 30-35 °С, минимум - от 0 до -7 °С и даже ниже.

К психрофильным микроорганизмам относятся бактерии, способные развиваться в холодильниках, на охлажденных продуктах и вызывающие их порчу. Это преимущественно неспорообразующие грамотрицательные подвижные и неподвижные палочки родов псевдомонас и ахромобактер (Pseudomonas и Achromobacter). При минусовых температурах могут развиваться и некоторые плесени, особенно Cladosporium и Thamnidium, прекращающие свою жизнедеятельность лишь при температуре около -10°С.

Термофильные (от греческого therme - тепло, жар), или теплолюбивые, микроорганизмы также довольно широко распространены в природе. Их находят не только в песках Сахары или в воде горячих минеральных источников, где они свободно живут при температуре 50-60°С. Термофилов повсеместно можно встретить в почве, в воде, в кишечнике человека и животных, так как они обладают очень устойчивыми спорами. Оптимальная температура для развития термофилов лежит между 50 и 60°С (иногда даже выше), минимум - около 30°С и максимум - между 70 и 80 °С.

К термофильным микробам относят Вас. aerothermophilus, Вас. calfactor, Вас. coagulans, Вас. thermodiastaticus, Cl. thermosaccharolyticum, отдельных представителей плесневых грибов рода Aspergillus и Penicillium и некоторые другие виды микроорганизмов. К группе термофильных причисляют и так называемых термогенных микробов, способных возбуждать экзотермические реакции. Термогенные микроорганизмы являются виновниками саморазогревания сена, зерна, хлопка, навоза и других органических материалов. Они играют большую роль в «табачном брожении» - в ферментации табака, протекающей в тюках табака при 54 °С и значительно улучшающей аромат и горючесть табака.

Биотермогенез (саморазогревание) навоза, обусловленный экзотермическими реакциями микробной природы, широко используется в парниках, теплицах, оранжереях для обогрева растений.

Однако между психрофилами и мезофилами, мезофилами и термофилами нельзя провести резкой границы. Имеется целый ряд переходных форм, одинаково хорошо развивающихся как при низких, так и при сравнительно высоких температурах. Таких микробов называют психротолерантными или термотолерантными (от латинского tolerantia - терпение). Указанные группы микробов как бы безразличны к теплу и холоду. Термотолерантные микробы, имея оптимум для развития около 30 °С, обнаруживают очень высокий максимум (55-60 °С). Психротолерантные микробы при оптимуме около 20 °С свободно развиваются и при очень низких температурах, близких к нулю и ниже. В табл. 1 приведены кардинальные температуры (в °С) роста и развития некоторых микробов (по литературным данным).

Точное определение кардинальных температурных точек для отдельных видов микроорганизмов является довольно трудной задачей, так как для различных жизненных функций микроба кардинальные температуры оказываются различными. В частности, оптимальная температура роста и размножения микробов не всегда совпадает с оптимальной температурой спорообразования, брожения или накопления кислот в среде. Например, микроорганизмы молока Streptococcus lactis наиболее интенсивно растут при 34 °С, а для брожения лучшей температурой для них является 40 °С. Температурный оптимум роста большинства плесневых грибов лежит между 25-30 °С, а для спорообразования им нужна более высокая температура: 35-40 °С. Плесневой гриб Aspergillus niger лучше всего растет при 35 °С, а продуцирует лимонную кислоту из сахара больше всего при температуре 20-25 °С.

Часто можно наблюдать явление, что оптимальная температура для развития одного вида микробов оказывается неподходящей для развития другого вида этого же рода и семейства.

Для одного и того же вида микроба в зависимости от места его обитания кардинальные температурные точки могут оказаться различными. Явление несовпадения температурных максимумов для некоторых видов почвенных бактерий отмечено Е. Н. Мишустиным. Он указывает, что для бактерий, выделенных из южных почв, температурный максимум оказывается более высоким и они образуют более термоустойчивые споры, чем представители этого же вида из северных почв.

По сравнению с другими живыми организмами микробы гораздо лучше переносят колебания температуры. Сенная палочка, например, способна развиваться в любой климатической зоне, так как свободно переносит температуры от 6 до 55 °С. Для других сапрофитных форм этот диапазон несколько сужен - от 10-15 до 40-45 °С. Только патогенные микроорганизмы имеют максимум и минимум, очень близко расположенные к оптимуму. Температурный интервал для их развития не превышает 5-10 °С.

Если длительно выращивать микроорганизмы при постоянно повышающейся или понижающейся температуре, то удается переместить кардинальные точки этих микробов. Подобным образом, например, были выведены холодостойкие расы дрожжей.

Зная отношение тех или иных микроорганизмов к температуре, можно в лабораторных условиях культивировать их при оптимальных для них температурах. Это дает возможность подробно изучить физиологические свойства и установить возможность применения и максимально выгодные условия при использовании в практической жизни биохимических реакций, возбуждаемых данными микроорганизмами.

Влияние на микроорганизмы низких и высоких температур

Высокие и низкие температуры влияют на микроорганизмы по-разному. Как правило, микроорганизмы не переносят высоких температур и погибают при этом более или менее быстро. Низкие же температуры оказывают смертельное (летальное) действие в том случае, если замерзает среда, в которой содержатся микробы, или если наблюдаются резкие скачки температуры при многократно повторяющемся замораживании и оттаивании. Однако отмирание микроорганизмов при охлаждении протекает гораздо медленнее, чем в условиях нагревания.

Низкие температуры, ниже минимума и даже близкие к абсолютному нулю, вызывают у большинства микробов так называемый анабиоз - «состояние скрытой жизни», напоминающее зимнее оцепенение многих холоднокровных животных (лягушек, змей, ящериц и пр.). В литературе, например, имеются очень интересные сведения о том, что в трупах мамонтов, пролежавших в мерзлой земле несколько десятков тысяч лет, были найдены споры и жизнеспособные гнилостные бактерии.

Холодоустойчивость различных микроорганизмов может колебаться в очень широких пределах. Были проделаны многочисленные опыты по замораживанию микробов. Споры бактерий и плесеней выдерживались в течение полугода (и даже более) при температуре жидкого воздуха (-190 °С); споры плесеней подвергались охлаждению в условиях вакуума до температуры жидкого водорода (-253 °С) в течение 3 дней, но и после такого замораживания они сохранили способность к развитию и размножению. Особенно устойчивыми к замораживанию оказываются споры бацилл. Выдерживают низкие температуры более или менее продолжительное время и некоторые бесспоровые микроорганизмы. Дифтерийные коринебактерии переносят замораживание 3 месяца. Брюшнотифозные бактерии длительно сохраняются во льду. Кишечная палочка сохраняет свою жизнеспособность и после 20-часового выдерживания при температуре жидкого воздуха.

Исследованиями установлено, что скорость отмирания микроорганизмов при замораживании зависит от их видовой принадлежности, возраста культуры, химического состава среды и влажности воздуха в камерах замораживания. Ф. М. Чистяков, Г. Л. Носкова, 3. 3. Бочарова, И. Брукс и другие установили, что если в замораживаемых продуктах сохраняется капельножидкая вода, то отдельные разновидности Penicillium glaucurn и Cladosporium herbarum будут развиваться даже при -8 °С. Чем выше кислотность замораживаемой среды, чем более высокой будет в ней концентрация растворенных веществ, тем быстрее погибают микроорганизмы. Так, при резком снижении температуры от 0 до -12 °С в кислых средах с высокой концентрацией растворенных веществ быстрее всего погибают бактерии кишечной группы и протея. Однако фекальный стрептококк в этих условиях сохраняет свою жизнеспособность. Высокая влажность воздуха в холодильных камерах создает благоприятные условия для развития плесеней и бактерий.

Большая выживаемость микробов при охлаждении и замораживании не противоречит, однако, современной тенденции холодильного хранения продуктов. Дело в том, что низкие температуры приостанавливают гнилостные и бродильные процессы, хотя и не делают продукт стерильным. Кроме того, при низких температурах качество продукта все же сохраняется дольше, так как при этом снижается отрицательное действие других, немикробиальных факторов. В частности, резко замедляется действие ферментов. Плоды и овощи без заметного ухудшения их качества можно хранить в охлажденном состоянии в течение нескольких месяцев. Сохранить продукты от порчи при понижении температуры можно, однако, только временно, пока продолжается действие холода. После оттаивания (дефростации), особенно при неправильном размораживании, когда нарушается целость тканей и наблюдается вытекание клеточного сока (в мясе, рыбе и пр.), микробы, сохранившие свою жизнеспособность, начнут интенсивно размножаться, что очень быстро вызывет порчу продукта. Поэтому к продуктам, направляемым на холодильное хранение, следует предъявлять строгие санитарно-гигиенические требования.

Высокие температуры, как указывалось, микроорганизмы переносят значительно хуже, чем охлаждение. Повышение температуры, выходящее за пределы максимума, всегда в конечном счете приводит к смерти микробной клетки. И чем выше температура, тем быстрее погибает микроб. Отмирают микроорганизмы не все одновременно. При воздействии на микробы высоких температур большое значение имеет степень нагревания, его продолжительность, вид микроорганизма и химический состав субстрата.

При кратковременном нагревании до температур, лишь незначительно превышающих максимум, у микробов наблюдается подобное анабиозу «тепловое окоченение»: все жизненные процессы в клетке приостанавливаются. Однако при быстром снижении температуры до пределов оптимума происходит восстановление функциональной деятельности микроба - его оживление. Но длительное пребывание микроорганизма в состоянии теплового окоченения приводит к летальному исходу. Например, гриб Penicillium glaucum, имеющий температурный максимум 34 °С, погиб при 35 °С через месяц. Споры Cladosporium herbarum настолько были ослаблены 50-дневной выдержкой при 35 °С, что прорастание их наблюдалось лишь спустя 11 дней.

Губительное действие высоких температур на микроорганизмы связано с термолабильностью белков. Известно, что нагревание вызывает денатурацию белка - его необратимое свертывание. На температуру денатурации белка очень сильно влияет процентное содержание в нем воды. Чем меньше воды в белке, тем более высокие температуры необходимы для его свертывания. Поэтому молодые вегетативные клетки микробов, богатые водой, погибают при нагревании быстрее, чем старые клетки, потерявшие определенное количество воды.

Высокие температуры вызывают необратимые изменения в живой цитоплазме микробных клеток, нарушают ее тонкие конструкции и течение биохимических реакций. Гибель микроорганизма при этом неизбежна, так как невозможно восстановить функциональные свойства живого вещества у его цитоплазмы, как нельзя вернуть первоначального состояния белку круто сваренного яйца.

Летальные температуры различны не только для различных микробов, но даже клетки одного и того же вида, выращенные в разных условиях, погибают разновременно. Многие микробы вне жидкого субстрата в подсушенном состоянии (зародыши в пыли или на стенках сухих сосудов) оказываются весьма термоустойчивыми. Они способны выдержать длительное нагревание при температурах, превышающих максимум их развития. В жидких же средах они сравнительно легко погибают. Очень высокую термоустойчивость проявляют споры бацилл и особенно споры термофильных микроорганизмов. Это объясняется тем, что споры содержат меньше воды, чем вегетативные клетки, да к тому же большая ее часть находится в связанном состоянии. Кроме того, споры покрыты плотной, труднопроницаемой оболочкой. Содержащиеся в спорах липоидные компоненты оказывают защитное действие при свертывании белка. Предполагают, что цитоплазма термофильных микробов построена из весьма термоустойчивых белков. Дрожжи и плесени гораздо менее устойчивы к нагреванию. Они сравнительно быстро погибают уже при 65-80 °С. Существуют, правда, виды плесневых грибов, выдерживающие нагревание до 100 °С, но кратковременное.

Большинство неспорообразующих бактерий погибает при температуре 60 °С в течение 30-60 мин. При более высоких температурах они гибнут быстрее. При действии сухого жара при 160-170 °С в течение 1-1,5 ч и нагревании при 120,6 °С под давлением пара 2 ат (19,6-104 н/м2) в течение 20-30 мин погибают как вегетативные клетки, так и споры всех микроорганизмов. Субстрат становится стерильным.

На губительном действии высоких температур на микроорганизмы основано производство стерилизованных баночных консервов. При консервировании пищевых продуктов приходится учитывать химический состав среды - ее кислотность, наличие в среде поваренной соли, жира - и многие другие факторы, влияющие на термоустойчивость микробов и их спор.

Следует иметь в виду, что в субстратах среди общей массы микробов всегда встречаются отдельные клетки с сильными индивидуальными отклонениями от средней термоустойчивости, характеризующей данный вид: бывают как менее, так и более устойчивые. В силу этого при нагревании в одних и тех же условиях не все микроорганизмы погибают одновременно. Могут сохраниться отдельные клетки данного вида, оказавшиеся более стойкими. Чем сильнее продукт загрязнен микробами, тем вероятнее присутствие в нем большего количества таких термоустойчивых особей, тем дольше нужно вести нагрев для их полного уничтожения. В пищевой промышленности использование высоких температур для уничтожения микробов осуществляется двумя способами - пастеризацией и стерилизацией.

Пастеризация. Продукт прогревают при температурах от 65 до 80 °С в течение нескольких минут. Продолжительность пастеризации зависит от вида продукта и температуры. При пастеризации уничтожаются лишь вегетативные клетки микробов; споры бактерий, а также клетки некоторых термофильных микроорганизмов при этом могут сохраниться. Для предупреждения порчи пастеризованных продуктов и задержки прорастания спор сохранившихся микробов такие продукты следует хранить в охлажденном состоянии. Пастеризацию применяют для молока, вина, фруктовых соков и некоторых других продуктов. Иногда используют кратковременный нагрев до температуры 90-100°С в течение нескольких секунд (мгновенная пастеризация, или лампоризация).

Стерилизация. Стерилизация предполагает уничтожение всех без исключения микроорганизмов и их спор - абсолютное обеспложивание. К стерилизации прибегают при изготовлении питательных сред для микробиологического анализа, при подготовке лабораторной посуды и в медицине (при подготовке хирургических инструментов, лекарственных веществ для инъекции и пр.). Осуществляют стерилизацию либо сухим жаром (в сушильных шкафах), либо перегретым паром под давлением (в автоклавах), либо текучим паром (в кипятильниках Коха).

Для консервирования пищевых продуктов длительное нагревание при высоких температурах практически оказалось неприемлемым. Невозможно для всех пищевых продуктов установить раз и навсегда такой режим стерилизации (температуру и продолжительность нагрева), при котором погибли бы абсолютно все как вегетативные клетки, так и споры микробов. Это объясняется тем, что жесткий режим стерилизации вызывает разваривание продуктов, разложение химических веществ, входящих в состав сырья. Вкус продуктов ухудшается, пищевая ценность снижается. Кроме того, универсальный режим стерилизации для всех консервов невозможен еще и потому, что даже у одного и того же вида микробов наблюдаются колебания в термоустойчивости отдельных экземпляров. Приходится учитывать разнообразное влияние различных факторов: химический состав среды, форму, размеры и материал тары, в которую расфасовывается продукт при стерилизации, и некоторые другие факторы. Овощи и фрукты, например, опасно нагревать даже до 100°С. так как они при этом теряют свою естественную консистенцию, резко изменяются в цвете, теряют аромат и вкус и пр. Даже стойкие к нагреванию продукты - мясо и рыба - при длительном нагревании снижают свои вкусовые качества.

Так как в задачу консервирования входит получение доброкачественных продуктов, по возможности сохранивших свои натуральные свойства или по крайней мере близкие к натуральным, сохранение пищевой ценности сырья - его вкуса, аромата, цвета, содержания витаминов и пр., то разработка режимов стерилизации является важным вопросом в технологии и микробиологии консервного производства.

Режимы стерилизации разрабатываются и устанавливаются в зависимости от: 1) активной кислотности продукта; 2) степени зрелости сырья; 3) объема и материала тары; 4) консистенции продукта; 5) степени загрязнения продукта микроорганизмами и качественного состава микрофлоры.

Таким образом, микробиологический контроль консервного производства не может ограничиться одним лишь микробиологическим анализом. Микробиолог должен хорошо знать технологический процесс, режимы обработки продуктов на каждом этапе производства, в любой точке технологической линии. Он должен уметь намечать пути и средства воздействия на ход любой технологической операции. Результаты наблюдений и микробиологического анализа должны немедленно доводиться до сведения технолога, мастера, рабочих для быстрого исправления нарушений и улучшения санитарной и технологической обработки продуктов. Только при таком условии микробиологический контроль консервного производства становится по-настоящему действенным и оперативным в борьбе за повышение качества продукции.

Действие различных форм лучистой энергии на микроорганизмы

Исследованиями установлено, что некоторые виды излучений оказывают на микроорганизмы стерилизующее действие. Этими формами лучистой энергии являются: солнечный свет, ультрафиолетовые лучи, лучи Рентгена, радиоактивные излучения, ультракороткие радиоволны. Эффективность воздействия различных лучей зависит от дозы облучения. Кроме того, весьма существенную роль играет при этом и длина волны, проницаемость среды, интенсивность и продолжительность облучения. Малые дозы облучения могут даже активировать отдельные жизненные функции микробных клеток (например, рост клетки, обмен веществ). Высокие же дозы облучения, как правило, действуют летально.

Механизм летального действия лучистой энергии на микроорганизмы объясняют либо непосредственным действием лучей на цитоплазму клетки, либо действием их на питательную среду. Прямое воздействие связано с непосредственным поглощением нуклеиновыми кислотами энергии излучения. При этом происходит повреждение нуклеиновых кислот. Вследствие высокого содержания воды в теле микробов происходит ионизация клеточного вещества, образуются высокореактивные группы типа гидроксильных, которые, взаимодействуя с белками клетки, вызывают энергичный процесс окисления и разрушают живое вещество.

Косвенное воздействие связано с превращениями, происходящими в питательной среде. Предполагается, что при облучении в питательном субстрате возбуждаются химические реакции, подобные тем, которые наблюдаются в живой цитоплазме. При этом образуются вредные для микроорганизмов вещества, питательный субстрат становится токсичным, непригодным для развития микробов.

Действие света

Воздействию света постоянно подвергаются все микроорганизмы, населяющие земную поверхность. Для фототрофных организмов, содержащих в клетках пигмент типа хлорофилла, свет является необходимым условием питания и жизни. Используя энергию солнечных лучей в процессе ассимиляции, фототрофные микроорганизмы строят из пищи вещества собственной природы. Ненормально развиваются в темноте плесени: они дают хорошо развитый мицелий, но совершенно не образуют спор.

Бесцветные сапрофиты в энергии солнечных лучей не нуждаются, наоборот, свет оказывает на них вредное влияние, подавляющее их развитие. Губительным является свет для многих болезнетворных микроорганизмов. Быстро погибают под действием прямых солнечных лучей брюшнотифозные и туберкулезные палочки, холерный вибрион, а из сапрофитов - палочка «чудесной крови». Одинаково чувствительными к солнечным лучам оказываются и вегетативные клетки и споры многих микробов.

Наглядно демонстрирует летальное действие солнечных лучей на микробы опыт В. И. Палладина. Питательную среду в чашках Петри он засевал сибиреязвенными бациллами, затем некоторое время подвергал чашки воздействию прямого солнечного света с последующим помещением их в термостат для выращивания. В тех чашках, которые подвергались лишь кратковременному действию солнца, наблюдался обильный рост колоний. Но чем дольше находились чашки Петри под воздействием солнечных лучей, тем все более ослабевал рост микробов. Основная масса их погибла за 10-20 мин облучения. После 70-минутной выдержки на солнечном свету в чашках не выросло ни одной колонии.

Неблагоприятное действие света на рост и развитие микробов обусловливает необходимость выращивать в лабораториях культуры микробов в темноте. Не следует хранить на свету и питательные среды. Питательная желатина, например, подвергнутая в течение некоторого времени воздействию прямых солнечных лучей, становится непригодной для выращивания микробов.

Большое значение имеет солнечный свет для самоочищения рек. В прозрачную воду солнечные лучи проникают на глубину до 2 м. Однако при наличии в воде мути их проникающая способность резко снижается. В сильно загрязненную воду световые лучи могут проникнуть лишь на глубину до 0,5 м. В почве действие света также сказывается только в поверхностном слое - на глубине 2-3 мм.

Ультрафиолетовые лучи

Наибольшим бактерицидным эффектом обладают ультрафиолетовые лучи (УФ-лучи) с длиной волны 2500-2600 А. Установлено, что к УФ-лучам споры более устойчивы, чем вегетативные клетки. Легче переносят облучение ультрафиолетовыми лучами также спорообразующие и окрашенные формы микробов. Сенная палочка, например, в 5-10 раз устойчивее к облучению УФ-лучами, чем кишечная палочка. Довольно хорошо противостоят облучению ультрафиолетовыми лучами дрожжи и плесневые грибы. Они, по-видимому, способны вырабатывать против УФ-лучей защитные вещества (жировые или восковые). Споры плесеней более устойчивы к облучению, чем мицелий.

Добавление к среде флюоресцирующих красок (эозина, эритрозина и др.) усиливает действие УФ-лучей. Это явление получило название фотодинамического эффекта. До настоящего времени УФ-лучи для консервирования пищевых продуктов применялись мало, потому что их проникающая способность незначительна. Летальное действие их ограничивается обычно микробами, находящимися на поверхности облучаемых объектов.

Бактерицидный эффект УФ-лучей зависит от продолжительности и интенсивности облучения, от температуры, pH среды, а также от «концентрации» микробов на единице поверхности продукта (обсемененности продукта микробами). Действие будет тем сильнее, чем больше продолжительность и интенсивность облучения, чем выше температура и кислотность среды и чем меньше микробов на поверхности продукта.

В последние годы УФ-лучи получили применение для дезинфекции воздуха холодильных камер, воздуха производственных и лечебных учреждений, для дезинфекции питьевой воды. Для этой цели используются специальные бактерицидные лампы. Хорошие результаты получены при сочетании облучения мяса и мясопродуктов УФ-лучами и охлаждения: оказалось возможным удлинить сроки холодильного хранения этих продуктов в 2-3 раза. Особенно чувствительными к действию УФ-лучей оказались бактерии ослизнения мяса. Они погибают уже через 1-2 мин облучения. Бактерии группы кишечной палочки и споры плесневых грибов погибают через 10 мин облучения (при использовании УФ-лучей с длиной волны 2920А).

Можно использовать УФ-лучи для ускорения процесса созревания мяса в условиях повышенных температур, когда ускоряется действие ферментов, размягчающих мясо, а развитие бактерий порчи мяса приостанавливается облучением. Применяют УФ-лучи при процессе старения сыра, производят с их помощью стерилизацию оберток для мясных и сырных продуктов, используют их при асептическом розливе напитков, облучают поверхность хлебобулочных изделий, что предупреждает развитие плесеней на их поверхности.

Нельзя использовать УФ-лучи для дезинфекции сливочного масла и молока, так как в этих продуктах УФ-лучи вызывают химические реакции, ухудшающие их вкусовые и пищевые свойства.

Инфракрасные (тепловые) лучи в отличие от ультрафиолетовых обладают гораздо меньшим бактерицидным эффектом. Действие инфракрасных лучей связано, по всей вероятности, с нагреванием облучаемой среды.

Лучи Рентгена

Рентгеновы лучи, или, как их еще называют, Х-лучи, представляют собой электромагнитные колебания с очень малой длиной волны - от нескольких сотых А до 20 А. Благодаря малой длине волны они слабо поглощаются веществами и обладают очень сильной проникающей способностью.

Использование для стерилизации рентгеновых лучей показало, что микроорганизмы к ним более выносливы, чем высшие организмы. При небольших дозах облучения у микробов даже наблюдается более интенсивное протекание отдельных жизненных функций. С повышением дозы облучения угнетающее действие рентгеновых лучей начинает проявляться сильнее: в культурах появляются уродливые клетки, рост микробов замедляется или они теряют способность к размножению. При еще более сильном облучении микроорганизмы гибнут. Устойчивость различных видов микробов к действию рентгеновых лучей неодинакова. Быстрее всего гибнут вирусы. Бактерии обладают большей устойчивостью, а дрожжи и плесени еще более устойчивы к лучам Рентгена.

Радиоактивные излучения

При распаде атомов радиоактивных элементов возникают, как известно, три типа излучений: альфа-, бета- и гамма-излучения. Наибольшей проникающей способностью обладают гамма-лучи. Источниками гамма-излучений может быть радиоизотоп кобальта Со60 или цезий-137. Действие гамма-лучей аналогично действию рентгеновых лучей. При малых дозах облучения они стимулируют отдельные жизненные функции (например, рост клеток). Опыты М. Н. Мейселя показали, что при малых дозах облучения подавляется размножение дрожжевых клеток, но на рост такие дозы не влияют. Дрожжевые клетки продолжают расти, но не почкуются: возникают гигантские особи, в несколько раз крупнее исходных.

Сравнительно недавно были открыты бактерии, живущие в атомном реакторе, где радиация в 2000 раз выше смертельной для человека. Установлено, что летальное действие гамма-лучей на микроорганизмы проявляется лишь при дозах облучения, в сотни и тысячи раз превышающих смертельную дозу для животных. Для гибели кишечной и дизентерийной палочек требуется доза в 600 000 рентген, а для дрожжей и спор - даже 1 500 000-4 000 000 рентген.

Применение ионизационных излучений для стерилизации пищевых продуктов в настоящее время тщательно изучается как в Советском Союзе, так и за рубежом. Гамма-лучи предполагается использовать для холодной лучевой стерилизации консервов, бактериологических препаратов, медикаментов и других, особенно в тех случаях, когда нежелательно тепловое воздействие на продукт или препарат. Метод ионизационной стерилизации имеет ряд преимуществ: он не изменяет качества продукта вследствие денатурации его составных частей (белков, полисахаридов, витаминов), которая происходит при тепловой стерилизации. Кроме того, процесс может быть осуществлен быстро, непрерывно, с высокой степенью автоматизации. Однако вопрос о безвредности пищевых продуктов после такой стерилизации еще недостаточно выяснен.

Токи высокой и ультравысокой частоты (ВЧ и УВЧ)

Стерилизующим эффектом обладают ультракороткие электромагнитные волны с длиной волны менее 10 м (токи ВЧ и УВЧ). В последние годы их все чаще стали использовать для стерилизации пищевых продуктов. Гибель микроорганизмов в стерилизуемой среде может быть объяснена на основании следующего явления. Под действием электрической энергии генерируемого в электромагнитном поле тока высокой частоты заряженные частицы среды (ионы и электроны) приходят в быстрое колебательное движение. Поглощаемая при этом электрическая энергия переходит в тепловую, обусловливая почти мгновенное разогревание среды до 90-120 °С. И микроорганизмы погибают в результате такого быстрого повышения температуры.

Характер нагревания среды токами высокой частоты резко отличается от обычных способов нагрева, при которых тепло распространяется путем конвекции от горячих слоев к холодным. При облучении ультракороткими электромагнитными волнами благодаря возникающим токам ВЧ продукт нагревается сразу во всех точках - объемно. А в зависимости от строения и диэлектрической постоянной отдельные части неоднородного продукта могут быть нагреты до разного уровня (избирательно, или селективно). Вода в стакане под действием токов ВЧ закипает за 2-3 сек. Во фруктовых компотах сироп можно нагреть до кипения, а фрукты будут оставаться холодными.

Использование токов ВЧ и УВЧ для стерилизации фруктовых и ягодных консервов дает возможность значительно повысить их качество, так как срок нагревания резко сокращается - до 1-3 мин; фрукты и ягоды не развариваются, сохраняют свою консистенцию, натуральный вкус и аромат. В консервах при вполне достаточной стерильности превосходно сохраняются витамины. При стерилизации токами ВЧ и УВЧ продукт необходимо расфасовывать в стеклянную тару, так как через жесть (металл) электромагнитные волны не проникают.

Действие ультразвуковых волн (УЗ-волн или УЗ)

Упругие звуковые колебания, частота которых превышает 20 000 герц, т.е. лежит за пределами частот, воспринимаемых человеческим ухом, получили в акустике название ультразвука. Новейшие современные ультразвуковые излучатели дают возможность получать ультразвуковые волны с частотой порядка 300 млн. гц и выше. От обычных звуковых волн ультразвуковые отличаются значительно меньшей длиной волны и очень большой интенсивностью. Они несут с собой громадный запас механической энергии. Объекты, которые подвергались ультразвуковому воздействию, называются «озвученными».

УЗ-волны могут быть использованы в пищевой промышленности для смешения и гомогенизации продуктов, фильтрации, предотвращения накипеобразования, для стерилизации и пастеризации продуктов, а также для очистки, мойки и дезинфекции оборудования и тары.

Исследования стерилизующего и пастеризующего действия УЗ-волн показали, что УЗ-колебания малой мощности при кратковременном озвучивании не вызывают отмирания микробов. Не погибают микроорганизмы и при продолжительном воздействии слабых УЗ-волн. Кратковременное озвучивание среды УЗ-колебаниями малой мощности способствует механическому разделению скоплений микробных клеток: пакеты сарцин, цепочки стрептококков, скопления стафилококков распадаются на отдельные жизнеспособные клетки; каждая клетка образует новую колонию. Летальное действие УЗ-волн на бактерии и вирусы начинает проявляться при их интенсивности от 1 вт/см2 * с. частотой колебаний порядка сотен килогерц. А при озвучивании мощными УЗ-колебаниями наблюдается почти мгновенный разрыв клеточных оболочек, разрушение внутреннего содержимого микробной клетки, вплоть до полного ее растворения. Бактерии более крупные разрушаются полнее и быстрее, чем мелкие; палочковидные бактерии погибают быстрее, чем кокки. Споры бактерий более устойчивы, чем вегетативные клетки.

Стерилизующее действие УЗ-волн зависит:

1) от обсемененности продукта микробами: в слишком «густой» микробной взвеси отмирания микробов не наступает; наблюдается разогревание среды;

2) от добавления в бактериальную взвесь поверхностно-активных веществ (глицерина, лейцина, пептона и пр.): бактерицидный эффект ультразвуковых волн при этом снижается;

3) от температуры среды: чем выше температура озвучиваемых субстратов, тем сильнее действуют УЗ-волны.

Влияет на результаты озвучивания вязкость среды, ее кислотность, наличие растворенных газов, различных катионов и пр. При неизменном времени и интенсивности озвучивания отмирание микроорганизмов резко ускоряется при увеличении частоты УЗ-колебаний.

Механизм бактерицидного действия ультразвука объясняют явлением кавитации. Оно заключается в том, что в озвучиваемой среде возникают быстрые попеременные сжатия и расширения отдельных ее участков. В местах сжатия давление резко возрастает и может достичь 10 000 ат (9,81 * 108 н/м2). В местах разрежения в этот же момент происходит разрыв вещества с образованием мельчайших пустот - каверн. В озвучиваемой жидкости каверны заполняются парами данной жидкости или растворенными в ней газами. Каверны непрерывно перемещаются в озвучиваемом субстрате. На месте прежней каверны возникают зоны высокого давления, а рядом образуется новая каверна, где наблюдается почти полный вакуум. Микроорганизмы могут выдерживать очень высокие давления, но в зонах кавитации (в кавернах) происходит моментальный разрыв клеточных оболочек микробов, не выдерживающих высокого внутриклеточного осмотического давления. Не исключена возможность образования кавитационных полостей и в цитоплазме клеток, что приводит к разрушению цитоплазматических структур.

То, что в ультразвуковом поле происходит преимущественно механическое разрушение микробов, подтверждают снимки, полученные при помощи электронного микроскопа: у бактерий, подвергавшихся озвучиванию, ясно видны повреждения или даже полное разрушение клеточных оболочек и плазмолиз.

При обработке ультразвуком твердых пищевых продуктов с целью их стерилизации возможно не только уничтожение микроорганизмов, но и повреждение клеток (растительных или животных) самого сырья. Хорошие результаты получаются при озвучивании жидких пищевых продуктов: молока, соков и пр. Создание конструкций непрерывно действующих ультразвуковых генераторов, в которых происходило бы непрерывное озвучивание протекающей жидкости, принесет большие экономические выгоды.

При ультразвуковой стерилизации пищевых продуктов очень важным является установление оптимального режима озвучивания: продолжительности озвучивания, мощности УЗ-волн и их частоты. При озвучивании любых живых клеток разрывы клеточных оболочек происходят настолько быстро, что содержимое клеток переходит в окружающую среду, почти не подвергаясь разрушительному действию ультразвука. Если сочетать этот эффект с моментальным центрифугированием, то из клеток могут быть извлечены биологически активные вещества: ферменты, витамины, гормоны, токсины и пр. Подобные опыты уже проводятся в медицинской и химической практике и являются весьма перспективными для изготовления вакцин и получения биологически активных веществ, вырабатываемых живыми клетками. Это очень важно как для их изучения, так и для промышленного получения в народнохозяйственных целях. Очень хорошие результаты получают при использовании ультразвука при мойке тары, особенно возвратной.

Влияние осмотического давления

Нормально процессы питания у микроорганизмов протекают при наличии в субстрате необходимых питательных веществ не только в доступной для данного микроба форме, но и при соответствующих концентрациях, определяющих тургор в живой клетке и осмотическое давление в растворе. Выше указывалось, что очень высокая концентрация растворенных в питательной среде веществ приводит к плазмолизу микробных клеток: цитоплазма клетки теряет воду, в клетке нарушается нормальный обмен веществ, изменяется структура цитоплазмы, и в конечном итоге микробная клетка гибнет. Правда, отмирание микробов в растворах с высокой концентрацией солей наступает не сразу. Благодаря высокой проницаемости цитоплазмы некоторые микроорганизмы могут приспосабливаться к изменению осмотического давления. У дрожжей и плесеней наблюдается даже способность к активной осморегуляции: в клеточном соке этих микробов накапливаются осмотически активные резервные питательные вещества, благодаря чему они могут сохранять свою жизнеспособность в средах с довольно широкими пределами колебания осмотического давления. Способными к осморегуляции оказываются только клетки, находящиеся в состоянии активной жизнедеятельности. Голодающие клетки и клетки с нарушенным дыхательным обменом к осморегуляции не способны и при повышении осмотического давления сравнительно быстро погибают. Явление плазмолиза микробных клеток в средах с высоким осмотическим давлением лежит в основе консервирования пищевых продуктов концентрированными растворами соли и сахара.

Растворы небольшой концентрации сахара для многих микробов являются хорошей питательной средой, и гибель микробов может быть обусловлена лишь высокой концентрацией сахара, превышающей 65-70%.

При изготовлении таких консервированных продуктов, как фруктовое желе, джем, мармелад, варенье, кроме добавления высокого процента сахара, производят уваривание продукта. Осмотическое давление в средах очень сильно повышается. В варенье, например, оно достигает 4 * 107 н/м2 (400 ат). Благодаря высокому осмотическому давлению продукты, уваренные с сахаром, хорошо сохраняются. Сравнительно редко наблюдаются случаи порчи варенья или меда; связанные с развитием в продуктах так называемых осмофильных дрожжей и плесеней. Плесень Aspergillus repens может развиваться в 80%-ном сахарном сиропе. Осмофильные дрожжи рода Zygosaccharomyces не погибают и в среде с 90% сахара. В сиропе, содержащем 70% сахара, свободно развивается бактерия Вас. gummosus.

Поваренная соль, являющаяся электролитом и диссоциирующая на ионы, обладает более высокой осмотической активностью, чем сахар. Кроме того, поваренная соль, по-видимому, оказывает на микробов и некоторое токсическое (ядовитое) действие. Для предохранения от порчи многих пищевых продуктов достаточно всего около 15% соли.

К действию соли особенно чувствительны гнилостные бактерии. При 5-10% NaCl в среде прекращает развитие Proteus vulgaris и Вас. mesentericus. Рост паратифозных бактерий - возбудителей пищевых отравлений - задерживается концентрацией соли 8-9%, для приостановления развития бациллы ботулизма нужна концентрация NaCl 6,5-12%. Патогенные микроорганизмы, как правило, более чувствительны к действию крепких растворов соли, чем сапрофитные, палочковидные - более чувствительны, чем кокки. Некоторые из микрококков могут свободно развиваться в среде с 25% поваренной соли.

Солелюбивые микроорганизмы, встречающиеся в природе (галофилы и галобы), обитают обычно в воде соленых озер. Вместе с солью они могут попадать на консервируемые продукты и вызывать их порчу. Пигментобразующая солелюбивая бактерия Bact. serratum salinarium, способная развиваться даже в насыщенном растворе соли, нередко вызывает порчу соленой рыбы - так называемый «фуксин». Рыба при этом приобретает красную окраску. Некоторые пленчатые дрожжи не погибают в рассолах с 24-30% поваренной соли.

В случае посола сельди развитие галофильных микроорганизмов является желательным. Обильная микрофлора в этом случае способствует созреванию сельди - улучшает ее вкусовые качества.

Концентрации соли и сахара, необходимые для задержания роста микроорганизмов в пищевых продуктах, зависят от ряда факторов: pH среды, температуры, содержания белков. Например, для задержки роста плесеней при температуре 0°С достаточно 8% соли, но при комнатной температуре необходимо уже 12%. Развитие дрожжей в соленых продуктах подавляется в кислой среде при 14% соли, а в нейтральной - только при 20%.

Для борьбы с осмофильной микрофлорой необходимо поддерживать высокий санитарный уровень производства, а иногда и прибегать к стерилизации продуктов нагреванием.

Жизнь микроорганизмов находится в тесной зависимости от условий окружающей среды. Все факторы окружающей среды, оказывающие влияние на микроорганизмы, можно разделить на три группы: физические, химические и биологические, благоприятное или губительное действие которых зависит как от природы самого фактора, так и от свойств микроорганизма.

Физические факторы

Из физических факторов наибольшее влияние на развитие микроорганизмов оказывают температура, высушивание, лучистая энергия, ультразвук.

Температура . Жизнедеятельность каждого микроорганизма ограничена определенными температурными границами. Эту температурную зависимость обычно выражают тремя основными точками: минимум - температура, ниже которой размножение микробных клеток прекращается; оптимум - наилучшая температура для роста и развития микроорганизмов; максимум - температура, выше которой жизнедеятельность клеток ослабляется или прекращается. Оптимальная температура обычно соответствует температурным условиям естественной среды обитания.

Все микроорганизмы по отношению к температуре подразделяются на психрофилы, мезофилы и термофилы.

Психрофилы (от греч. psychros - холодный, phileo - люблю), или холодолюбивые микроорганизмы, растут при относительно низких температурах: минимальная температура - 0° С, оптимальная - 10-20° С, максимальная - 30° С. Эта группа включает микроорганизмы, обитающие в северных морях и океанах, почве, сточных водах. Сюда же относятся светящиеся и железобактерии, а также микробы, вызывающие порчу продуктов на холоду (ниже 0° С).

Мезофилы (от греч. mesos - средний) - наиболее обширная группа, включающая большинство сапрофитов и все патогенные микроорганизмы. Оптимальная температура для них 28-37° С, минимальная - 10° С, максимальная - 45° С.

Термофилы (от греч. termos - тепло, жар), или теплолюбивые микроорганизмы, развиваются при температуре выше 55° С, температурный минимум для них 30° С, оптимум - 50-60° С, а максимум - 70-75° С. Они встречаются в горячих минеральных источниках, поверхностном слое почвы, самонагревающихся субстратах (навозе, сене, зерне), кишечнике человека и животных. Среди термофилов много споровых форм.

Высокие и низкие температуры оказывают различное влияние на микроорганизмы. Одни более чувствительны к высоким температурам. Причем, чем выше температура за пределами максимума, тем быстрее наступает гибель микробных клеток, что обусловлено денатурацией (свертыванием) белков клетки.

Вегетативные формы бактерий мезофилов погибают при температуре 60° С в течение 30-60 мин, а при 80-100° С - через 1-2 мин. Споры бактерий гораздо устойчивее к высоким температурам. Например, споры бацилл сибирской язвы выдерживают кипячение в течение 10-20 мин, а споры клостридий ботулизма - 6 ч. Все микроорганизмы, включая споры, погибают при температуре 165-170° С в течение часа (в сухожаровом шкафу) или при действии пара под давлением 1 атм (в автоклаве) в течение 30 мин.

Действие высоких температур на микроорганизмы положено в основу стерилизации - полного освобождения разнообразных объектов от микроорганизмов и их спор (см. ниже).

К действию низких температур многие микроорганизмы чрезвычайно устойчивы. Сальмонеллы тифа и холерный вибрион длительно выживают во льду. Некоторые микроорганизмы остаются жизнеспособными при температуре жидкого воздуха (-190° С), а споры бактерий выдерживают температуру до -250° С.

Только отдельные виды патогенных бактерий чувствительны к низким температурам (например, бордетеллы коклюша и паракоклюша, нейссерии менингококка и др.). Эти свойства микроорганизмов учитывают в лабораторной диагностике и при транспортировке исследуемого материала - его доставляют в лабораторию защищенным от охлаждения.

Действие низких температур приостанавливает гнилостные и бродильные процессы, Что широко применяется для сохранения пищевых продуктов в холодильных установках, погребах, ледниках. При температуре ниже 0° С микробы впадают в состояние анабиоза - наступает замедление процессов обмена веществ и прекращается размножение. Однако при наличии соответствующих температурных условий и питательной среды жизненные функции микробных клеток восстанавливаются. Это свойство микроорганизмов используется в лабораторной практике для сохранения культур микробов при низких температурах. Губительное действие на микроорганизмы оказывает также быстрая смена высоких и низких температур (замораживание и оттаивание) - это приводит к разрыву клеточных оболочек.

Высушивание . Для нормальной жизнедеятельности микроорганизмов необходима вода. Высушивание приводит к обезвоживанию цитоплазмы, нарушению целостности цитоплазматической мембраны, вследствие чего нарушается питание микробных клеток и наступает их гибель.

Сроки отмирания разных видов микроорганизмов под влиянием высушивания значительно отличаются. Так, например, патогенные нейссерии (менингококки, гонококки), лептоспиры, бледная трепонема и другие погибают при высушивании через несколько минут. Холерный вибрион выдерживает высушивание 2 сут, сальмонеллы тифа - 70 сут, а микобактерии туберкулеза - 90 сут. Но высохшая мокрота больных туберкулезом, в которой возбудители защищены сухим белковым чехлом, остается заразной 10 мес.

Особой устойчивостью к высушиванию, как и к другим воздействиям окружающей среды, обладают споры. Споры бацилл сибирской язвы сохраняют способность к прорастанию в течение 10 лет, а споры плесневых грибов - до 20 лет.

Неблагоприятное действие высушивания на микроорганизмы издавна используется для консервирования овощей, фруктов, мяса, рыбы и лекарственных трав. В то же время, попав в условия повышенной влажности, такие продукты быстро портятся из-за восстановления жизнедеятельности микробов.

Для хранения культур микроорганизмов, вакцин и других биологических препаратов широко применяют метод лиофильной сушки. Сущность метода состоит в том, что предварительно микроорганизмы или препараты подвергают замораживанию, а затем их высушивают в условиях вакуума. При этом микробные клетки переходят в состояние анабиоза и сохраняют свои биологические свойства в течение нескольких месяцев или лет.

Лучистая энергия . В природе микроорганизмы постоянно подвергаются воздействию солнечной радиации. Прямые солнечные лучи вызывают гибель многих микроорганизмов в течение нескольких часов, за исключением фотосинтезирующих бактерий (зеленых и пурпурных серобактерий). Губительное действие солнечного света обусловлено активностью ультрафиолетовых лучей (УФ-лучи). Они инактивируют ферменты клетки и повреждают ДНК. Патогенные бактерии более чувствительны к действию УФ-лучей, чем сапрофиты. Поэтому хранить микробные культуры в лаборатории лучше в темноте. В этом отношении демонстративен опыт Бухнера.

В чашку Петри с тонким слоем агара производят обильный посев какой-либо культуры бактерий. На наружную поверхность засеянной чашки наклеивают вырезанные из черной бумаги буквы, образующие, например, слово "typhus". Чашку, обращенную дном вверх, подвергают облучению прямыми солнечными лучами в течение 1 ч. Затем бумажки снимают, и чашку ставят на сутки в термостат при 37° С. Рост бактерий наблюдается лишь в тех местах агара, которые были защищены от действия УФ-лучей наклеенными буквами. Остальная часть агара остается прозрачной, т. е. рост микроорганизмов отсутствует (рис. 11).

Велико значение солнечного света как естественного фактора оздоровления внешней среды. Он освобождает от патогенных бактерий воздух, воду "естественных водоемов, верхние слои почвы.

Бактерицидное (уничтожающее бактерий) действие УФ-лучей используется для стерилизации воздуха закрытых помещений (операционных, перевязочных, боксов и т. д.), а также воды и молока. Источником этих лучей являются лампы ультрафиолетового излучения, бактерицидные лампы.

Другие виды лучистой энергии - рентгеновские лучи, α-, β-, γ-лучи оказывают губительное действие на микроорганизмы только в больших дозах, порядка 440-280 Дж/кг. Гибель микробов обусловлена разрушением ядерных структур и клеточной ДНК. Малые дозы излучений стимулируют рост микробных клеток. Микроорганизмы значительно устойчивее к радиоактивным излучениям, чем высшие организмы. Известны тионовые бактерии, обитающие в залежах урановых руд. Бактерии обнаруживали в воде атомных реакторов при концентрации ионизирующей радиации 20-30 кДж/кг.

Бактерицидное действие ионизирующего излучения используется для консервирования некоторых пищевых продуктов, стерилизации биологических препаратов (сывороток, вакцин и др.), при этом свойства стерилизуемого материала не изменяются.

В последние годы радиационным методом стерилизуют изделия для одноразового использования - полистироловые пипетки, чашки Петри, лунки для серологических реакций, шприцы, а также шовный материал - кетгут и др.

Ультразвук вызывает значительное поражение микробной клетки. Под действием ультразвука газы, находящиеся в жидкой среде цитоплазмы, активируются, и внутри клетки возникает высокое давление (до 10000. атм). Это приводит к разрыву клеточной оболочки и гибели клетки. Ультразвук используют для стерилизации пищевых продуктов (молока, фруктовых соков), питьевой воды.

Высокое давление . К механическому давлению бактерии и особенно их споры устойчивы. В природе встречаются бактерии, живущие в морях и океанах на глубине 1000-10000 м под давлением от 100 до 900 атм. Некоторые виды бактерий выдерживают давление до 3000-5000 атм, а бактериальные споры - даже 20000 атм.

Химические факторы

Влияние химических веществ на микроорганизмы различно в зависимости от природы химического соединения, его концентрации, продолжительности воздействия на микробные клетки. В зависимости от концентрации химическое вещество может быть источником питания или оказывать угнетающее действие на жизнедеятельность микроорганизмов. Например, 0,5-2% раствор глюкозы стимулирует рост микробов, а 20-40% растворы глюкозы задерживают размножение микробных клеток.

Многие химические соединения, оказывающие губительное действие на микроорганизмы, используются в медицинской практике в качестве дезинфицирующих веществ и антисептиков.

Химические вещества, используемые для дезинфекции, называют дезинфицирующими. Под дезинфекцией понимают мероприятия, направленные на уничтожение патогенных микроорганизмов в различных объектах окружающей среды. К дезинфицирующим веществам относят галлоидные соединения, фенолы и их производные, соли тяжелых металлов, некоторые кислоты, щелочи, спирты и др. Они вызывают гибель микробных клеток, действуя в оптимальных концентрациях, в течение определенного времени. Многие дезинфицирующие вещества оказывают вредное воздействие на ткани макроорганизма.

Антисептиками называют химические вещества, которые могут вызывать гибель микроорганизмов или задерживать их рост и размножение. Их используют с лечебной целью (химиотерапия), а также для обеззараживания ран, кожи, слизистых оболочек человека. Антисептическими свойствами обладают перекись водорода, спиртовые растворы йода, бриллиантового зеленого, растворы перманганата калия и др. Некоторые антисептические вещества (уксусная, сернистая, бензойная кислоты и др.) в дозах, безвредных для человека, применяют для консервирования пищевых продуктов.

По механизму действия химические вещества, обладающие противомикробной активностью, можно подразделить на несколько групп.

1. Поверхностно-активные вещества (жирные кислоты, мыла и прочие детергенты) вызывают снижение поверхностного натяжения, что приводит к нарушению функционирования клеточной стенки и цитоплазматической мембраны микроорганизмов.

2. Фенол, крезол и их производные вызывают коагуляцию микробных белков. Они используются для дезинфекции заразного материала в микробиологической практике и инфекционных больницах.

3. Окислители, взаимодействуя с микробными белками, нарушают деятельность ферментов, вызывают денатурацию белков. Активными окислителями являются хлор, озон, которые используют для обеззараживания питьевой воды. Хлорпроизводные вещества (хлорная известь, хлорамин) широко употребляют в целях дезинфекции. Окисляющими свойствами обладают перекись водорода, перманганат калия, йод и др.

4. Формальдегид применяют в виде 40% раствора (формалин) для дезинфекции. Он убивает вегетативные и споровые формы микроорганизмов. Формалин блокирует аминогруппы белков микробной клетки и вызывает их денатурацию.

5. Соли тяжелых металлов (ртуть, свинец, цинк, золото и др.) коагулируют белки микробной клетки, вызывая этим их гибель. Ряд металлов (серебро, золото, ртуть и др.) оказывают бактерицидное действие на микроорганизмы в ничтожно малых концентрациях. Это свойство получило название олигодинамического действия (от лат. oligos - малый, dinamys - сила). Доказано, что вода, находящаяся в сосудах из серебра, не загнивает, благодаря бактерицидному действию ионов серебра. Для профилактики бленнореи * новорожденных долгое время применяли 1% раствор нитрата серебра. Коллоидные растворы органических соединений серебра (протаргол, колларгол) используют также в виде местных антисептических средств.

* (Бленнорея - воспаление конъюнктивы глаза, вызванное гонококками. )

Сильным антимикробным действием обладают препараты ртути. Издавна для дезинфекции применяли бихлорид ртути, или сулему (в разведении 1:1000). Однако она оказывает токсическое действие на ткани макроорганизма и использование ее ограничено.

6. Красители (бриллиантовый зеленый, риванол и др.) обладают свойством задерживать рост бактерий. Растворы ряда красителей применяют в качестве антисептических средств, а также вводят в состав некоторых питательных сред для угнетения роста сопутствующей микрофлоры.

Губительное действие ряда физических и химических факторов на микроорганизмы составляет основу асептического и антисептического методов, широко используемых в медицинской и санитарной практике.

Асептика - система профилактических мероприятий, препятствующих микробному загрязнению объекта (раны, операционного поля, культур микроорганизмов и т. д.), основанная на физических методах.

Антисептика - комплекс мер, направленных на уничтожение микроорганизмов в ране, целом организме или на объектах внешней среды, с применением различных обеззараживающих химических веществ.

Биологические факторы

В естественных условиях обитания микроорганизмы существуют не изолированно, а находятся в сложных взаимоотношениях, которые сводятся в основном к симбиозу, метабиозу и антагонизму.

Симбиоз - это сожительство организмов различных видов, приносящих им взаимную пользу. При этом совместно они развиваются лучше, чем каждый из них в отдельности.

Симбиотические взаимоотношения существуют между клубеньковыми бактериями и бобовыми растениями, между мицелиальными грибами и сине-зелеными водорослями (лишайниками): Симбиоз молочно-кислых бактерий и спиртовых дрожжей используют для приготовления некоторых молочно-кислых продуктов (кефир, кумыс).

Метабиоз - такой вид взаимоотношений, при котором продукты обмена одного вида микроорганизмов создают необходимые условия для развития других. Например, гнилостные микроорганизмы, расщепляющие белковые вещества, способствуют накоплению в среде аммонийных соединений и создают благоприятные условия для роста и развития нитрифицирующих бактерий. А развитие анаэробов в хорошо аэрируемой почве было бы невозможно без аэробов, поглощающих свободный кислород.

Метабиотические взаимоотношения широко распространены среди почвенных микроорганизмов и лежат в основе круговорота веществ в природе.

Антагонизм - форма взаимоотношений, при которой один микроорганизм угнетает развитие другого или может вызвать его полную гибель. Антагонистические взаимоотношения выработались у микроорганизмов в борьбе за существование. Повсюду, где они обитают, между ними идет непрерывная борьба за источники питания, кислород воздуха, среду обитания. Так, большинство патогенных бактерий, попав с выделениями больных во внешнюю среду (почву, воду), не выдерживают здесь длительной конкуренции с многочисленными сапрофитами и сравнительно быстро погибают.

Антагонизм может быть обусловлен прямым воздействием микроорганизмов друг на друга или действием продуктов их обмена. Например, простейшие пожирают бактерий, а фаги лизируют их. Кишечник новорожденных заселяют молочно-кислые бактерии Bifidobacterium bifidum. Выделяя молочную кислоту, они подавляют рост гнилостных бактерий и этим защищают от кишечных Расстройств еще малоустойчивый организм грудных детей. Некоторые микроорганизмы в процессе жизнедеятельности вырабатывают различные вещества, оказывающие губительное действие на бактерии и другие микробы. К таким веществам относят антибиотики (см. "Антибиотики").

Контрольные вопросы

1. Какие физические факторы оказывают влияние на жизнедеятельность микроорганизмов?

2. Какие вещества относит к дезинфицирующим и как они различаются по механизму воздействия на микроорганизмы?

3. Перечислите, какие взаимоотношения существуют между микроорганизмами?

Стерилизация

Стерилизация - это обеспложивание, т. е. полное освобождение объектов окружающей среды от микроорганизмов и их спор.

Стерилизацию производят различными способами:

1) физическими (воздействие высокой температуры, УФ-лучей, использование бактериальных фильтров);

2) химическими (использование различных дезинфектантов, антисептиков);

3) биологическим (применение антибиотиков).

В лабораторной практике обычно применяют физические способы стерилизации.

Возможность и целесообразность использования того или иного способа стерилизации обусловлена особенностями материала, подлежащего стерилизации, его физическими и химическими свойствами.

Физические способы

Прокаливание в пламени горелки или фламбирование - способ стерилизации, при котором происходит полное обеспложивание объекта, так как погибают и вегетативные клетки, и споры микроорганизмов. Обычно прокаливают бактериологические петли, шпатели, пипетки, предметные и покровные стекла, мелкие инструменты. Не следует стерилизовать прокаливанием ножницы, скальпели, так как под действием огня режущая поверхность становится тупой.

Сухожаровая стерилизация

Стерилизацию сухим жаром или горячим воздухом осуществляют в печах Пастера (сушильных сухожаровых шкафах). Печь Пастера - шкаф с двойными стенками, изготовленный из термостойких материалов - металла и асбеста. Нагревают шкаф с помощью газовых горелок или электронагревательных приборов. Шкафы с электрическим нагревом снабжены регуляторами, обеспечивающими необходимую температуру. Для контроля температуры имеется термометр, вставленный в отверстие верхней стенки шкафа.

Сухим жаром стерилизуют в основном лабораторную Посуду. Подготовленную для стерилизации посуду неплотно загружают в печь, чтобы обеспечить равномерный и надежный прогрев стерилизуемого материала. Дверь шкафа плотно закрывают, включают обогревательный прибор, доводят температуру до 160-165° С и при этой температуре стерилизуют 1 ч. По окончании стерилизации выключают обогрев, но дверцу шкафа не открывают до тех пор, пока печь не остынет; в противном случае холодный воздух, поступающий внутрь шкафа, может вызвать образование трещин на горячей посуде.

Стерилизацию в печи Пастера можно проводить при различном температурном режиме и экспозиции (время стерилизации) (табл. 1).

Жидкости (питательные среды, изотонический раствор хлорида натрия и др.), предметы из резины и синтетических материалов стерилизовать сухим жаром нельзя, так как жидкости вскипают и выливаются, а резина и синтетические материалы плавятся.

Для контроля стерилизации в печи Пастера шелковые нити смачивают в культуре спорообразующих бактерий, подсушивают, помещают в стерильную чашку Петри и ставят в печь Пастера. Стерилизацию проводят при температуре 165° С 1 ч (для контроля часть нитей оставляют при комнатной температуре). Затем простерилизованные и контрольные нити кладут на поверхность агара в чашку Петри или помещают в пробирки с бульоном и инкубируют в термостате при температуре 37° С в течение 2 сут. При правильной работе печи Пастера в пробирках или чашках с питательными средами, куда были помещены простерилизованные нити, роста не будет, так как споры бактерий погибнут, в то время как споры бактерий на нитях, не подвергавшихся стерилизации (контрольные), прорастут и на питательных средах будет отмечен рост.

Для определения температуры внутри печи Пастера можно использовать сахарозу или пищевой сахарный песок, карамелизующиеся при температуре 165-170° С.

Подготовка лабораторной посуды к стерилизации в печи Пастера . Лабораторную посуду (чашки Петри, пипетки градуированные и пастеровские, флаконы, колбы, пробирки) перед стерилизацией необходимо тщательно вымыть, высушить и завернуть в бумагу, иначе после стерилизации она может снова загрязниться бактериями воздуха.

Чашки Петри завертывают в бумагу по одной или несколько штук либо укладывают в специальные металлические пеналы.

В верхние концы пипеток вставляют ватные тампоны, предупреждающие попадание исследуемого материала в рот. Градуированные пипетки заворачивают в длинные полоски бумаги шириной 4-5 см. На бумаге отмечают объем завернутой пипетки. В пеналах градуированные пипетки стерилизуют без дополнительного завертывания в бумагу.

Примечание . Если градуировка на пипетках плохо заметна, ее восстанавливают перед стерилизацией. На пипетку наносят масляную краску и, не дав краске высохнуть, в нее втирают с помощью тряпочки порошок бария сульфата. После этого тряпкой снимают избыток краски, которая остается только в насечках градуировки. Обработанные таким образом пипетки следует сполоснуть.

Острые концы пастеровских пипеток запаивают в пламени горелки и заворачивают в бумагу по 3-5 штук. Заворачивать пастеровские пипетки нужно осторожно, чтобы не обломать запаянные концы капилляров.

Флаконы, колбы, пробирки закрывают ватно-марлевыми пробками. Пробка должна входить в горлышко сосуда на 2 / 3 своей длины, не слишком туго, но и не свободно. Поверх пробок на каждый сосуд (кроме пробирок) надевают бумажный колпачок. Пробирки связывают по 5-50 штук и обертывают поверх бумагой.

Примечание . При высоких температурах бумага, в которую завертывают чашки и пипетки, и вата желтеют и даже могут обугливаться, поэтому каждый новый сорт бумаги, получаемый лабораторией, следует испытывать при принятом температурном режиме.

Контрольные вопросы

1. Что понимают под термином стерилизация?

2. Какими способами проводят стерилизацию?

3. Что стерилизуют прокаливанием на огне?

4. Опишите устройство и режим работы печи Пастера.

5. Что стерилизуют в печи Пастера?

6. Как подготавливают стеклянную посуду к стерилизации?

7. Почему в печи Пастера нельзя стерилизовать питательные среды и предметы из резины?

Задание

Подготовьте к стерилизации чашки Петри, градуированные пипетки, пастеровские пипетки, пробирки, колбы и флаконы.

Стерилизация кипячением

Кипячение - способ стерилизации, гарантирующий обеспложивание при условии отсутствия в стерилизуемом материале спор. Применяют для обработки шприцев инструментов, стеклянной и металлической посуды резиновых трубок и т. п.

Стерилизацию кипячением обычно проводят в стерилизаторе - металлической коробке прямоугольной формы с плотно закрывающейся крышкой. Стерилизуемый материал помещают на имеющуюся в стерилизаторе сетку и заливают водой. Для повышения точки кипения и устранения жесткости воды добавляют 1-2% гидрокарбонат натрия (лучше пользоваться дистиллированной водой). Стерилизатор закрывают крышкой и подогревают Началом стерилизации считают момент закипания воды, время кипячения 15-30 мин. По окончании стерилизации сетку с инструментами извлекают за боковые ручки специальными крючками, а находящиеся в ней инструменты берут стерильным пинцетом или корнцангом, который кипятят вместе с остальными инструментами.

Стерилизацию паром производят двумя способами: 1) паром под давлением; 2) текучим паром.

Стерилизацию паром под давлением производят в автоклаве. Этот способ стерилизации основан на воздействии на стерилизуемые материалы насыщенного водяного пара при давлении выше атмосферного. В результате такой стерилизации при однократной обработке погибают как вегетативные, так и споровые формы микроорганизмов.

Автоклав (рис. 12) - массивный котел, снаружи покрытый металлическим кожухом, герметически закрыт крышкой, которая плотно привинчивается к котлу откидывающимися болтами. В наружный котел вставлен другой, меньшего диаметра, который называют стерилизационной камерой. В эту камеру помещают предметы, подлежащие стерилизации. Между обоими котлами имеется свободное пространство, называемое водопаровой камерой. В эту камеру через воронку, укрепленную снаружи, наливают воду до определенного уровня, отмеченного на специальной водомерной трубке. При кипячении воды в водопаровой камере образуется пар. Стерилизационная камера снабжена выпускным краном с предохранительным клапаном для выхода пара при повышении давления сверх необходимого. Для определения давления, создающегося в стерилизационной камере, служит манометр.


Рис. 12. Схема автоклава. М - манометр; ПК - предохранительный клапан; В - воронка для воды; К 2 - кран для выпуска воды; К 3 - кран для выпуска пара

Нормальное атмосферное давление (760 мм рт. ст.) принимают за нуль. Между показаниями манометра и температурой имеется определенная зависимость (табл. 2).

В настоящее время имеются автоклавы с автоматическим регулированием режима работы. Кроме обычного манометра, они снабжены электроконтактным манометром, который препятствует увеличению давления выше заданной величины и тем самым обеспечивает постоянство нужной температуры в автоклаве.

Паром под давлением стерилизуют различные питательные среды (кроме содержащих нативные белки), жидкости (изотонический раствор хлорида натрия, воду и т. д.); приборы, особенно имеющие резиновые части.

Температура и длительность автоклавирования питательных сред определяется их составом, указанным в рецепте приготовления питательной среды. Например, простые среды (мясопептонный агар, мясопептонный бульон) стерилизуют 20 мин при 120° С (1 атм). Однако при этой температуре нельзя стерилизовать среды, содержащие нативные белки, углеводы и другие легко изменяющиеся от нагревания вещества. Среды с углеводами стерилизуют дробно при 100° С или в автоклаве при 112° С (0,5 атм) 10-15 мин. Различные жидкости, приборы, имеющие резиновые шланги, пробки, бактериальные свечи и фильтры стерилизуют 20 мин при 120° С (1 атм).

Внимание! В автоклавах производят также обезвреживание инфицированного материала. Чашки и пробирки, содержащие культуры микроорганизмов, помещают в специальные металлические ведра или баки с отверстиями в крышке для проникновения пара и стерилизуют в автоклаве при 126° С (1,5 атм) в течение 1 ч. Таким же образом стерилизуют инструменты после работы с бактериями, образующими споры.

К работе с автоклавом допускаются только специально подготовленные лица, которые должны строго и точно выполнять правила, указанные в инструкции, прилагаемой к аппарату.

Техника автоклавирования . 1. Перед работой проверяют исправность всех частей и притертость кранов.

2. Через воронку, укрепленную снаружи котла, до верхней метки водомерного стекла заливают воду (дистиллированную или кипяченую, чтобы не образовалась накипь). Кран под воронкой закрывают.

3. В стерилизационную камеру на специальную сетку помещают стерилизуемый материал. Предметы следует загружать не слишком плотно, так как пар должен свободно проходить между ними, иначе они не нагреваются до нужной температуры и могут остаться нестерильными.

4. Резиновую прокладку на крышке натирают мелом для лучшей герметизации.

5. Крышку закрывают и болтами привинчивают к корпусу автоклава, причем болты закручивают попарно крест-накрест.

6. Открывают до отказа выпускной кран, соединяющий стерилизационную камеру с наружным воздухом, и начинают нагревать автоклав. Нагревание автоклава обычно производят с помощью газа или электричества.

При нагревании автоклава вода закипает, образующийся пар поднимается между стенками котлов и сквозь специальные отверстия, имеющиеся в стенке внутреннего котла (см. рис. 12), попадает в стерилизационную камеру и выходит через открытый выпускной кран. Сначала пар выходит вместе с воздухом, находившимся в автоклаве. Необходимо, чтобы весь воздух был вытеснен из автоклава, так как в противном случае показания манометра не будут соответствовать температуре в автоклаве.

Появление непрерывной сильной струи пара указывает на полное удаление воздуха из автоклава; после этого выпускной кран закрывают и давление, внутри автоклава начинает постепенно повышаться.

7. Началом стерилизации считают момент, когда показания манометра достигают заданной величины. Нагрев регулируют так, чтобы давление в автоклаве в течение определенного времени не изменялось.

8. По истечении времени стерилизации нагрев автоклава прекращают, пар выпускают через выпускной кран. Когда стрелка манометра опускается до нуля, открывают крышку. Чтобы избежать ожогов паром, оставшимся в автоклаве, крышку следует открывать на себя.

Уровень температуры в автоклаве, т. е. правильность показаний манометра, можно проверить. Для этого используют различные вещества, имеющие определенную точку плавления: антипирин (113° С), резорцин и серу (119° С), бензойную кислоту (120° С). Одно из этих веществ смешивают с ничтожно малым количеством красителя (фуксина или метиленового синего) и насыпают в стеклянную трубочку, которую запаивают и помещают в вертикальном положении между стерилизуемым материалом. Если температура достаточна, вещество расплавится и окрасится в цвет соответствующего красителя.

Для проверки эффективности стерилизации в автоклав помещают пробирку с заведомо споровой культурой. После автоклавирования пробирку переносят в термостат на 24-48 ч, отмечают отсутствие или наличие роста. Отсутствие роста свидетельствует о правильной работе прибора.

Стерилизацию текучим паром производят в аппарате Коха. Этот способ применяют в тех случаях, когда стерилизуемый объект изменяется при температуре выше 100° С. Текучим паром стерилизуют питательные среды, содержащие мочевину, углеводы, молоко, картофель, желатин и др.

Аппарат (кипятильник) Коха представляет собой металлический цилиндр, обшитый снаружи (для уменьшения теплоотдачи) войлоком или асбестом. Цилиндр закрывают конической крышкой с отверстием для выхода пара. Внутри цилиндра находится подставка, до уровня которой наливают воду. На подставку ставят ведро с отверстием, в которое помещают стерилизуемый материал. Нагревают аппарат Коха при помощи газа или электричества. Отсчет времени стерилизации ведут с момента энергичного выделения пара у краев крышки и из отверстия для выхода пара. Стерилизуют в течение 30-60 мин. По окончании стерилизации нагрев прекращают. Вынимают из аппарата ведро с материалом и оставляют при комнатной температуре до следующего дня. Прогревание проводят 3 дня подряд при температуре 100° С по 30-60 мин. Такой метод носит название дробной стерилизации. При первом прогревании гибнут вегетативные формы микробов, а споровые сохраняются. За сутки споры успевают прорасти и превратиться в вегетативные формы, которые погибают на второй день стерилизации. Так как возможно, что некоторая часть спор не успела прорасти, материал выдерживают еще 24 ч, а затем проводят третью стерилизацию. Стерилизация текучим паром в аппарате Коха не требует специального контроля, так как показателем правильной работы прибора служит стерильность приготовленных питательных сред. Стерилизовать текучим паром можно также в автоклаве при незавинченной крышке и открытом выпускном кране.

Контрольные вопросы

1. Какие питательные среды стерилизуют паром?

2. Что такое стерилизатор и как он устроен?

3. Почему при стерилизации кипячением следует применять дистиллированную воду?

4. Опишите устройство и режим работы автоклава.

5. Что стерилизуют в автоклаве?

6. Что служит контролем правильной стерилизации при автоклавировании?

7. Что такое стерилизация текучим паром?

8. Опишите устройство аппарата Коха.

9. С какой целью проводят дробную стерилизацию?

Задание

Заполните форму.


Дробную стерилизацию можно проводить также в свертывателе Коха.

Свертыватель Коха используют для свертывания сывороточных и яичных питательных сред, причем одновременно с уплотнением среды происходит ее стерилизация.

Свертыватель Коха представляет собой плоский металлический ящик с двойными стенками, покрытый снаружи теплоизоляционным материалом. В пространство между стенками через специальное отверстие, находящееся в верхней части наружной стенки, наливают воду. Отверстие закрывают пробкой, в которую вставлен термометр. Закрывают аппарат двумя крышками: стеклянной и металлической. Через стеклянную крышку можно наблюдать за процессом свертывания. Пробирки со средами укладывают на дно свертывателя в наклонном положении.

Нагревание свертывателя осуществляют с помощью газа или электричества. Среды стерилизуют однократно при температуре 90° С в течение 1 ч или дробно - 3 дня подряд при 80° С в течение 1 ч.

Тиндализацию * - дробную стерилизацию при низких температурах - применяют для веществ, которые легко разрушаются и денатурируются при температуре 60° С (например, белковые жидкости). Прогревание стерилизуемого материала производят на водяной бане или в специальных приборах с терморегуляторами при температуре 56-58° С в течение часа 5 дней подряд.

* (Способ стерилизации, назван по имени Тиндаля, предложившего его. )

Пастеризация - стерилизация при 65-70° С в течение 1 ч, предложена Пастером для уничтожения бесспоровых форм микробов. Пастеризуют молоко, вино, пиво, плодовые соки и другие продукты. Молоко пастеризуют с целью освобождения от молочно-кислых и патогенных бактерий (бруцеллы, микобактерии туберкулеза, шигеллы, сальмонеллы, стафилококки и др.). При пастеризации пива, плодовых соков, вина погибают микроорганизмы, вызывающие различные виды брожения. Пастеризованные продукты лучше сохранять на холоду.

Контрольные вопросы

1. Каково назначение и устройство свертывателя Коха?

2. Какие существуют способы стерилизации в свертывателе?

3. Что такое тиндализация?

4. Что такое пастеризация?

Стерилизация ультрафиолетовым облучением

Стерилизацию УФ-лучами производят при помощи специальных установок - бактерицидных ламп. УФ-лучи обладают высокой антимикробной активностью и могут вызвать гибель не только вегетативных клеток, но и спор. УФ-облучение применяют для стерилизации воздуха в больницах, операционных, детских учреждениях и т. д. В микробиологической лаборатории УФ-лучами обрабатывают бокс перед работой.

Контрольные вопросы

1. Какими свойствами обладают ультрафиолетовые лучи?

2. В каких случаях прибегают к стерилизации методом ультрафиолетового излучения?

Механическая стерилизация при помощи бактериальных фильтров

Стерилизацию фильтрованием применяют в тех случаях, когда стерилизуемые предметы изменяются при нагревании. Фильтрование проводят с помощью бактериальных фильтров, изготовленных из различных мелкопористых материалов. Поры фильтров должны быть достаточно мелкими (до 1 мкм), чтобы обеспечить механическую задержку бактерий, поэтому некоторые авторы относят фильтрование к механическим способам стерилизации.

Методом фильтрования стерилизуют питательные среды, содержащие белок, сыворотки, некоторые антибиотики, а также отделяют бактерии от вирусов, фагов и экзотоксинов.

В микробиологической практике используют асбестовые фильтры Зейтца, мембранные фильтры и фильтры (свечи) Шамберлана и Беркефельда.

Фильтры Зейтца представляют собой диски, изготовленные из смеси асбеста с целлюлозой. Толщина их 3-5 мм, диаметр 35-140 мм. Отечественная промышленность изготовляет фильтры двух марок: "Ф" (фильтрующие)- задерживающие взвешенные частицы, но пропускающие бактерии; "СФ" (стерилизующие) - с меньшими порами, задерживающие бактерии, но пропускающие вирусы. Мятые асбестовые пластинки, а также пластинки с надломами и трещинами для работы непригодны.

Мембранные фильтры готовят из нитроцеллюлозы. Они представляют собой диски белого цвета толщиной 0,1 мм и диаметром 35 мм. В зависимости от размера пор их обозначают № 1, 2, 3, 4 и 5 (табл. 3).

Для стерилизации наиболее пригоден фильтр № 1. Кроме перечисленных, выпускают еще так называемый предварительный фильтр, предназначенный для освобождения фильтруемой жидкости от содержащихся в ней крупных частиц.

Фильтры (свечи) Шамберлана и Беркефельда представляют собой полые цилиндры, закрытые с одного конца. Свечи Шамберлана изготовляют из каолина с примесью песка и кварца. Стандартизуют их по размерам пор и обозначают L 1 , L 2 , L 3 ... L 13 . Фильтры (свечи) Беркефельда готовят из инфузорной земли, по величине пор их обозначают V, N, W, что соответствует диаметру пор 3-4, 4-7, 8-12 мк.

Работу с бактериальными фильтрами осуществляют следующим образом. Фильтр должен быть закреплен в специальном держателе, который вставляют в приемник фильтра. Приемником обычно является колба Бунзена. Держатели, в большинстве случаев сделанные из нержавеющей стали, состоят из двух частей: верхней, имеющей форму цилиндра без дна, и нижней - опорной части, заканчивающейся трубкой. Фильтры Зейтца шероховатой поверхностью вверх помещают на металлическую сетку и крепко зажимают винтами между верхней и нижней частью держателя. Смонтированный фильтр укрепляют в резиновой пробке, вставленной в горлышко колбы Бунзена. В отводную трубку колбы, которую присоединяют к вакуумному насосу, вставляют ватный тампон. Подготовленную установку обертывают бумагой и стерилизуют в автоклаве под давлением 1 атм в течение 20-30 мин. Весь прибор в собранном виде называют также фильтром Зейтца (рис. 13).

Непосредственно перед фильтрованием отводной конец колбы Бунзена соединяют резиновой трубкой с масляным или водоструйным насосом. Места соединения различных частей заливают парафином для создания герметичности. В цилиндр аппарата наливают фильтруемую жидкость и включают в действие насос, создающий вакуум в приемнике. В результате образующейся разности давлений фильтруемая жидкость проходит через поры фильтра в приемник, а микробы остаются на поверхности фильтра.

Мембранные фильтры перед употреблением стерилизуют кипячением в дистиллированной воде. Чтобы предупредить скручивание фильтров, их сначала помещают в дистиллированную воду, подогретую до температуры 50-60° С, и кипятят на слабом огне 30 мин, 2-3 раза меняя воду. Держатель и приемник фильтра стерилизуют заранее, прибор монтируют в асептических условиях. Чтобы не порвать мембранный фильтр о металлическую сетку, под него кладут кружки стерильной фильтровальной бумаги. Затем стерильным пинцетом с гладкими кончиками берут мембранный фильтр из стерилизатора и помещают на опорную сетку блестящей поверхностью вниз.

Простерилизованные в автоклаве свечи (Шамберлана) соединяют посредством резиновой трубки с приёмником и опускают в сосуд (чаще цилиндр) с фильтруемой жидкостью. Фильтрация происходит при помощи вакуумного насоса. В приемник поступает стерильный фильтрат, а бактерии задерживаются порами свечи.

Мембранные и асбестовые фильтры рассчитаны на одноразовое использование. Свечи после употребления кипятят в водопроводной воде, затем прокаливают в муфельной печи.

Перед последующим употреблением свечи проверяют на целостность. Свечу опускают в сосуд с водой и пропускают воздух. Если на поверхности свечи выступают пузырьки воздуха, значит в свече образовались трещины и она непригодна.

Контрольные вопросы

1. В чем заключается метод стерилизации фильтрованием? Что стерилизуют этим методом?

2. Какие бактериальные фильтры Вы знаете? Как монтируют прибор для фильтрования, какие условия необходимо соблюдать?

Химические способы

Этот вид стерилизации применяют ограниченно, и он служит в основном для предупреждения бактериального загрязнения питательных сред и иммунобиологических препаратов (вакцин и сывороток).

К питательным средам чаще всего прибавляют такие вещества, как хлороформ, толуол, эфир. При необходимости освободить среду от этих консервантов ее нагревают на водяной бане при 56° С (консерванты испаряются).

Для консервирования вакцин, сывороток пользуются мертиолатом, борной кислотой, формалином и т. д.

Биологическая стерилизация

Биологическая стерилизация основана на применении антибиотиков. Этот метод используют при культивировании вирусов.

Контрольные вопросы

1. Что такое химическая стерилизация и когда ее используют?

2. Что такое биологическая стерилизация?

Основные способы стерилизации представлены в табл. 4.

1 (Стерилизация неполная: в стерилизуемом материале сохраняются споры. )

2 (Стерилизация неполная: в стерилизуемом материале сохраняются вирусы. )

Дезинфекция

В микробиологической практике применяют различные дезинфицирующие вещества: 3-5% растворы фенола, 5-10% растворы лизола, 1-5% растворы хлорамина, 3-6% растворы перекиси водорода, 1-5% растворы формалина, растворы сулемы в разведении 1:1000 (0,1%), 70° спирт и др.

Дезинфекции подвергают отработанный патологический материал (гной, кал, моча, мокрота, кровь, спинномозговая жидкость) перед сливом его в канализацию. Обеззараживание проводят сухой хлорной известью или 3-5% раствором хлорамина.

Загрязненные патологическим материалом или культурами микроорганизмов пипетки (градуированные и пастеровские), стеклянные шпатели, предметные и покровные стекла опускают на сутки в стеклянные банки с 3% раствором фенола или перекиси водорода.

По окончании работы с заразным материалом лаборант должен обработать дезинфицирующим раствором рабочее место и руки. Поверхность рабочего стола протирают кусочком ваты, смоченным 3% раствором фенола. Руки дезинфицируют 1% раствором хлорамина. Для этого ватный шарик или марлевую салфетку смачивают дезинфицирующим раствором и протирают левую кисть, потом правую, а затем моют руки теплой водой с мылом.

Выбор дезинфицирующего вещества, его концентрация и длительность воздействия (экспозиция) зависят от биологических свойств микроба и от той среды, в которой будет происходить контакт дезинфицирующего вещества с патогенными микроорганизмами. Например, сулема, фенол, спирты непригодны для обеззараживания белковых субстратов (гной, кровь, мокрота), так как под их влиянием происходит свертывание белков, а свернувшийся белок предохраняет микроорганизмы от воздействия дезинфицирующих веществ.

При дезинфекции материала, инфицированного споровыми формами микроорганизмов, применяют 5% раствор хлорамина, 1-2,5% растворы активированного хлорамина, 5-10% растворы формалина и другие вещества.

Дезинфекцию, которую проводят на протяжении всего дня по ходу работы, называют текущей, а по окончании работы - заключительной.

Дезинфицирующие вещества и прописи приготовления из них рабочих растворов . Хлорная известь - белый комковатый порошок с резким запахом хлора, в воде растворяется не полностью. Бактерицидный эффект зависит от содержания активного хлора, количество которого колеблется от 28 до 36%. Хлорная известь, содержащая менее 25% активного хлора, для дезинфекции непригодна.

При неправильном хранении хлорная известь разлагается и теряет часть активного хлора. Разложению способствуют тепло, влага, солнечный свет, поэтому хранить хлорную известь следует в сухом, темном месте, в плотно закрытой таре.

Сухую хлорную известь применяют для обеззараживания выделений человека и животных (из расчета 200 г на 1 л испражнений и 10 г на 1 л мочи).

Приготовление исходного 10% осветленного раствора хлорной извести. Берут 1 кг сухой хлорной извести, помещают в эмалированное ведро и измельчают. Затем заливают холодной водой до объема 10 л, хорошо перемешивают, закрывают крышкой и оставляют на сутки в прохладном месте. После этого образовавшийся 10% осветленный раствор осторожно сливают и отфильтровывают через несколько слоев марли или процеживают через плотную ткань. Хранят в бутылях из темного стекла, закрытых деревянной пробкой, в прохладном месте, не более 10 сут. Рабочие растворы необходимой концентрации готовят из основного раствора непосредственного перед их употреблением. Количество основного раствора, необходимое для приготовления 0,2-10% осветленных растворов хлорной извести, приведено в табл. 5.

Концентрацию осветленных растворов хлорной извести от 0,2 до 10% выбирают в зависимости от характера обеззараживаемого объекта и устойчивости возбудителя.

Хлорамин - кристаллическое вещество белого или желтоватого цвета, содержит 24-28% активного хлора. Хорошо растворяется в воде при комнатной температуре, поэтому растворы его готовят непосредственно перед дезинфекцией. Пользуются 0,2-10% растворами хлорамина. Соотношение между процентной концентрацией раствора и количеством хлорамина в граммах на 1 и 10 л приведено в табл. 6.

Растворяют хлорамин в стеклянной или эмалированной посуде. При хранении растворов хлорамина в посуде из темного стекла с притертой пробкой их активность сохраняется до 15 сут.

Активированный хлорамин. Дезинфицирующие свойства хлорамина усиливаются при добавлении к нему активатора в соотношении 1:1 или 1:2. В качестве активатора используют аммонийные соединения - хлорид, сульфат, нитрат аммония. Применяется активированный хлорамин в концентрации 0,5, 1 и 2,5%. Готовят их непосредственно перед употреблением. Раздельно отвешивают хлорамин и соль аммония. Сначала растворяют в воде хлорамин, а затем прибавляют активатор.

Преимущество активированных растворов хлорамина перед обычными заключается в том, что при добавлении активатора ускоряется выделение активного хлора. Поэтому препарат губительно действует не только на вегетативные формы микроорганизмов, но и на их споры. Активированный хлорамин применяют в более низких концентрациях и при меньшей экспозиции.

Фенол (карболовая кислота) представляет собой бесцветные кристаллы игольчатой формы с резким характерным запахом. Под действием света, воздуха и влаги кристаллы приобретают малиново-красный цвет. Хранят в закрытых банках из темного стекла и в защищенном от света месте.

Фенол растворим в воде, спирте, эфире, жирных маслах. Обладая большой гигроскопичностью, поглощает из окружающей среды влагу и становится жидким. Жидкая карболовая кислота содержит 90% кристаллического фенола и 10% воды.

Применяют 3-5% водные растворы карболовой кислоты, приготовленные из кристаллического фенола и жидкой карболовой кислоты по схеме, приведенной в табл. 7. Активность фенола повышается при растворении его в горячей воде (40-50° С).

Внимание! Кристаллический фенол или жидкая карболовая кислота, попадая на кожу, могут вызвать ее раздражение, а в больших концентрациях - тяжелые ожоги. Поэтому обращаться с карболовой кислотой нужно с большой осторожностью. При изготовлении растворов следует надевать резиновые перчатки или в крайнем случае смазать руки вазелином.

В случае попадания карболовой кислоты на кожу необходимо немедленно смыть ее теплой водой с мылом или 40° этиловым спиртом.

Примечание. Для приготовления дезинфицирующих растворов фенола удобнее и безопаснее использовать жидкую карболовую кислоту.

Контрольные вопросы

1. Какие дезинфицирующие вещества применяют в микробиологической практике?

2. Опишите внешний вид и основные свойства хлорной извести, хлорамина, фенола.

3. Какие растворы дезинфицирующих веществ используют для обеззараживания материала, инфицированного споровыми формами микроорганизмов?

Задание

Приготовьте 2 л 5% рабочего раствора осветленной хлорной извести; 500 мл 3% раствора хлорамина, 300 мл 1% раствора активированного хлорамина.

Внимание! Прежде чем приступить к приготовлению растворов, сделайте расчеты.

Лечебный факультет

Педиатрический факультет

КАФЕДРА МИКРОБИОЛОГИИ ТГМА

Занятие № 7

ДЕЙСТВИЕ ФИЗИЧЕСКИХ И ХИМИЧЕСКИХ ФАКТОРОВ НА МИКРООРГАНИЗМЫ

Цель занятия:

изучить действие на микробы физических и химических факторов; понятия «асептика» и «антисептика»; методы стерилизации и аппаратуру.

СТУДЕНТ ДОЛЖЕН ЗНАТЬ:

    Действие на микроорганизмы высоких и низких температур, давления. Понятие «стерилизация».

    Понятия «асептика» и «антисептика»

    Методы стерилизации, аппаратура.

    Действие на микроорганизмы факторов высушивания. Лиофильное высушивание.

    Действие света, ультразвука, лучистой энергии, ионизирующей радиации.

    Действие химических факторов на микробы. Дезинфицирующие и антисептические вещества.

СТУДЕНТ ДОЛЖЕН УМЕТЬ:

    готовить посуду к стерилизации в сухожаровом шкафу и автоклаве;

    оценить результаты контроля стерильности работы автоклава и сухожарового шкафа;

    оценить результаты определения чувствительности микробов к антимикробным веществам (дезинфектанты, антисептики).

СТУДЕНТ ДОЛЖЕН ИМЕТЬ ПРЕДСТАВЛЕНИЕ

об индексе токсичности при применении антисептиков; о режиме асептики при изготовлении лекарств; о химических консервантах крови, биопрепаратов, живых вакцин.

Методические указания

Работа № 1. Методы и режим стерилизации различных материалов

Цель: изучить методы стерилизации различных материалов.

Разработать и занести в тетрадь таблицу «Методы и режим стерилизации различных материалов».

Дано: таблица.

МЕТОДЫ И РЕЖИМ СТЕРИЛИЗАЦИИ РАЗЛИЧНЫХ МАТЕРИАЛОВ

Метод стерилизации

Аппаратура

Температура

Время (мин)

Материал

Кипячение

Прокаливание

Автоклавирование

Сухим жаром

Пастеризация

Тиндализация

Фильтрование

Лиофильная сушка

Лучистая энергия

Ионизирующая радиация

Работа № 2. Контроль эффективности стерилизации

Цель: оценить качество работы автоклава. Объяснить механизм стерилизации.

Результат:

Работа № 3. Определение чувствительности микроорганизмов к антисептикам

Цель: оценить чувствительность микробных клеток к антисептикам. Объяснить механизм действия антисептика в каждом конкретном случае. Зарисовать. Сделать вывод.

Дано: опыт № 2 (посев кишечной палочки с внесенными антисептиками - йод, метиленовый синий, карболовая кислота, хлорамин); таблица «Классификация антисептиков по механизму действия» (см. методические рекомендации).

Результат:

Теоретическая справка

Влияние физических факторов на микроорганизмы

Температура является наиболее значимым фактором, оказывающим влияние на жизнедеятельность микробов. Температура, необходимая для роста и размножения бактерий одного и того же вида варьирует в широких пределах. Различают температурный оптимум, минимум и максимум.

Температурный оптимум соответствует физиологической норме данного вида микробов, при которой размножение происходит быстро и интенсивно. Для большинствапатогенных и условно-патогенных микробов температурный оптимум соответствует37 0 С.

Температурный минимум соответствует температуре, при которой данный вид микробане проявляет жизнедеятельность .

Температурный максимум – температура, при которой рост и размножение прекращается,все процессы метаболизма снижаются и может наступить гибель.

В зависимости от температуры, оптимальной для жизнедеятельности, различают 3 группы микроорганизмов:

1) психрофильные , холодолюбивые, размножающиеся при температуре ниже 20 0 С (иерсинии, психрофильные варианты клебсиелл, псевдомонады, вызывающие заболевания человека. Размножаясь в пищевых продуктах, они более вирулентны при низких температурах);

2) термофильные , оптимум развития которых лежит в пределах 55 0 С (в организме теплокровных не размножаются и медицинского значения не имеют);

3) мезофильные , активно размножаются при температуре 20-40 0 С, оптимум температуры развития для них 37 0 С (патогенные для человека бактерии).

Микроорганизмы хорошо выдерживают низкие температуры. На этом основано длительное сохранение бактерий в замороженном состоянии. Однако ниже температурного минимума проявляется повреждающее действие низких температур, обусловленное разрывом клеточной мембраны кристаллами льда и приостановкой метаболических процессов.

Низкая температура приостанавливает гнилостные и бродильные процессы. Это лежит в основе консервации субстратов (в частности, пищевых продуктов) холодом.

Губительное действие высокой температуры (выше температурного максимума для каждой группы) используется при стерилизации. Стерилизация – обеспложивание – это процесс умерщвления на изделиях или в изделиях или удаление из объекта микроорганизмов всех видов, находящихся на всех стадиях развития, включая споры (термические и химические методы и средства). Для гибели вегетативных форм бактерий достаточно действия температуры 60 0 С в течение 20-30 мин; споры погибают при 170 0 С или при температуре 120 0 С пара под давлением (в автоклаве).

Асептика – комплекс мероприятий, направленных против возможности попадания микроорганизмов в рану, ткани, органы, полости тела больного при хирургических операциях, перевязках, инструментальных исследованиях, а также на предотвращение микробного и другого загрязнения при получении стерильной продукции на всех этапах технологического процесса.

Антисептика – комплекс лечебно-профилактических мероприятий, направленных на уничтожение микроорганизмов, способных вызвать инфекционный процесс на поврежденных или интактных участках кожи или слизистых оболочек.

Дезинфекция – обеззараживание объектов окружающей среды: уничтожение патогенных для человека и животных микроорганизмов с помощью химических веществ, обладающих антимиробным действием.

Рост и размножение микробов происходит при наличии воды, необходимой для пассивной и активного транспорта питательных веществ в цитоплазму клетки. Снижение влажности (высушивание) приводит к переходу клетки в стадию покоя, а затем к гибели. Наименее устойчивыми к высушиванию являются патогенные микроорганизмы – менингококки, гонококки, трепонемы, бактерии коклюша, ортомиксо-, парамиксо- и герпес-вирусы. Микобактерии туберкулеза, вирус натуральной оспы, сальмонеллы, актиномицеты, грибы устойчивы к высушиванию. Особой устойчивостью к высушиванию обладают споры бактерий. Устойчивость к высушиванию повышается, если микробы предварительно замораживают. Для сохранения жизнеспособности и стабильности свойств микроорганизмов в произ­водственных целях используется метод лиофильной сушки - высушивание из замороженного состояния под глубоким вакуумом.

В процессе лиофилизации производят: 1) предварительное замораживание материала при t -40 0 - -45 0 С в спиртовых ваннах в течение 30-40 мин; 2) осуществляют сушку из замороженного состояния в вакууме в сублимационных аппаратах в течение 24-28 часов.

Процесс высушивания имеет 2 фазы: сублимация льда при t ниже 0°С и де­сорбцию - удаление части свободной и связанной воды при t выше 0°С.

Лиофилизацию используют для получения сухих препаратов, когда не проис­ходит денатурации белков и не изменяется структура материала (антисыворотки, вакцины, сухая бактериальная масса). В лабораторных условиях лиофилизированные культуры микробов сохраняются в течение 10-20 лет, причем культура остает­ся чистой и не подвергается мутациям.

Прокаливание производят в пламени спиртовки или газовой горелки. Этим способом стерилизуют бактерирологические петли, препаровальные иглы, пинцеты и некоторые другие инструменты.

Кипячение применяют для стерилизации шприцев, мелкого хирургического инструментария, предметных, покровных стекол и т.д. Стерилизацию проводят в стерилизаторах, в которые наливают воду и доводят ее до кипения. Для устранения жесткости и повышения температуры кипения к воде добавляют 1-2% бикарбонат натрия. Инструменты обычно кипятят в течение 30 мин. Данный метод не обеспечивает полной стерилизации, так как споры бактерий при этом не погибают.

Пастеризация - стерилизация при 65-70°С в течение 1 часа для уничтожения бесспоровых микроорганизмов (молоко освобождается от бруцелл, микобактерий туберкулеза, шигелл, сальмонелл, стафилококков) Хранят на холоде

Тиндализация - дробная стерилизация материалов при 56-58 0 С в течение 1 часа 5-6 дней подряд. Применяется для стерилизации легко разрушающихся при высокой температуре веществ (сыворотка крови, витамины и др.).

Действие лучистой энергии на микроорганизмы. Солнечный свет, особенно его ультрафиолетовый и инфракрасный спектры, губительно действуют на вегета­тивные формы микробов в течение нескольких минут.

Инфракрасное излучение используется для стерилизации объектов, которая достигается за счет теплового воздействия температурой 300 0 С в течение 30 мин. Инфракрасные лучи оказывают воздействие на свободнорадикальные процессы, в результате чего нарушаются химические связи в молекулах микробной клетки.

Для дезинфекции воздуха помещений лечебно-профилактических учрежде­ний и аптек широко используются ртутно-кварцевые и ртутно-увиолевые лампы, являющиеся источником ультрафиолетовых лучей. При действии УФЛ с длиной волны 254 нм в дозе 1,5-5 мк Вт т/с на 1 см 2 при 30-ти минутной экспозиции погибают все вегетативные формы бактерий. Повреждающее действие УФ излуче­ния вызвано повреждением ДНК микробных клеток, приводящим к мутациям и гибели.

Ионизирующая радиация обладает мощным проникающим и повреждаю­щим действием на клеточный геном микробов. Для стерилизации инструментов одноразового использования (игл, шприцев) используют гамма-излучение, источ­ником которого являются радиоактивные изотопы 60 Со и 137 Сs в дозе 1,5-2 МN.рад. Этим методом стерилизуют также системы переливания крови и шовный матери­ал. Действие ультразвука в определенных частотах на микроорганизмы вызывает деполимеризацию органелл клетки, денатурацию входящих в их состав молекул в результате локального нагревания или повышения давления. Стерилизация объек­тов ультразвуком осуществляется на промышленных предприятиях, так как источ­ником УЗ являются мощные генераторы. Стерилизации подвергаются жидкие среды, в которых убиваются не только вегетативные формы, но и споры.

Стерилизация фильтрованием - освобождение от микробов материала, ко­торый не может быть подвергнут нагреванию (сыворотка крови, ряд лекарств). Используются фильтры с очень мелкими порами, не пропускающими микробы: из фарфора (фильтр Шамберлена), каолина, асбестовых пластинок (фильтр Зейтца). Фильтрование происходит под повышенным давлением, жидкость нагнетается через поры фильтра в приемник или создается разрежение воздуха в приемнике и жидкость всасывается в него через фильтр. К фильтрующему прибору присоединя­ется нагнетающий или разрежающий насос. Прибор стерилизуют в автоклаве.