Правило дерягина формулировка. Изучение устойчивости гидрозоля гидроксида железа

Рассчитанное отношение сопоставляют с отношением порогов быстрой коагуляции, которое следует из правила Дерягина-Ландау (правила Шульце - Гарди).

Количественное уточнение и теоретическое обоснование правила Шульце - Гарди были даны Дерягиным и Ландау. Для расчета порога коагуляции теория дает следующую формулу

Коагулирующая способность электролита характеризуется порогом коагуляции, т. е. минимальной концентрацией электролита Б коллоидном растворе, вызывающей его коагуляцию. Порог коагуляции зависит от валентности коагулирующего иона. Эта зависимость выражается правилом значности (правилом Шульце - Гарди). Более строгую, теоретически обоснованную количественную связь между порогом быстрой коагуляции у и валентностью иона выражает правило Дерягина - Ландау

Этот результат, впервые теоретически полученный Дерягиным и Ландау, уточняет правило Шульце-Гарди.

Основные закономерности коагуляции под действием электролитов. Изменение устойчивости золей при изменении содержания в них электролитов было известно уже первым исследователям коллоидных систем (Ф. Сельми, Т. Грэм, М. Фарадей, Г. И. Борщов). В дальнейшем благодаря работам Г. Шульца, У. Гарди, Г. Пиктона, О. Линдера, Г. Фрейндлиха, В. Паули, Г. Кройта, Н. П. Пескова, А. В. Думанского и других был накоплен обширный экспериментальный материал и сделаны основные теоретические обобщения. Огромный вклад в развитие теории электролитной коагуляции внесли советские ученые Б. В. Дерягин с сотр., П. А. Ребиндер и его школа. Экспериментально установленные закономерности при коагуляции электролитами известны под названием правил коагуляции

Строят графики зависимости оптической плотности О от концентрации электролита Сэт (рис. III.5). Из точки пересечения продолжения обоих прямолинейных участков кривой опускают перпендикуляр на ось абсцисс и находят порог быстрой коагуляции для каждого электролита. Поделив полученные значения порогов коагуляции на наименьшее из них, выводят правило значности и сопоставляют его с правилом Дерягина - Ландау.

Существование резкого скачка свойств на определенном расстоянии от подложки было еще ранее обнаружено В. В. Карасевым и Б. В. Дерягиным при измерении зависимости вязкости некоторых органических жидкостей от расстояния до твердой стенки. Все это дает право называть такие слои особой, граничной фазой, поскольку наличие резкой границы раздела есть основное определение фазы. Различие с обычными фазами заключается в том, что толщина граничной фазы - вполне определенная для данной температуры величина.

Теория Дерягина - Фервея - Овербека устанавливает, что Ск обратно пропорционально шестой степени валентности коагулирующего иона. Эту же зависимость отражает экспериментально найденное правило Шульце - Гарди. Полученное отличное совпадение хорошо подтверждает правильность теории коагуляции лиофобных золей.

На многочисленных объектах показано , что порог коагуляции обратно пропорционален валентности коагулирующих ионов в степени от 5 до 9, часто в степени 6. Наблюдались и более низкие значения показателя степени (2-3). Таким образом, правило Шульце - Гарди предполагает лишь высокую степень зависимости порога коагуляции от валентности (г) противоионов. Тем не менее оно иногда отождествляется с теоретически выведенным законом 2 Дерягина- Ландау.

Влияние валентности коагулирующих ионов на порог коагуляции определяется правилом Шульце-Гарди чем больше валентность коагулирующих ионов, тем больше их коагулирующая сила или тем меньше порог коагуляции. Теоретическое обоснование этого правила было дано в 1945 г. Б. В. Дерягиным и Л. Д. Ландау. Найденная ими связь между порогом коагуляции и валентностью коагулирующих ионов выражается в форме

Если учесть, что в случае барьерного механизма при г

Для получения более тонких и устойчивых водных суспензий гидрофильных набухающих веществ (висмута нитрата основного, цинка оксида, магния оксида, кальция фосфата, карбоната и глицерофосфата, коалина, натрия гидрокарбоната, железа глицерофосфата) наиболее целесообразно использовать прием взмучивания, который является разновидностью дисперсионного метода. Сущность приема заключается в том, что вещество диспергируют сначала в сухом виде, затем - с учетом правила Дерягина. Полученную тонкую пульпу разбавляют примерно в 10 раз водой (раствором), растирают и сливают верхний слой суспензии в склянку для отпуска. Операцию взмучивания повторяют до тех пор, пока все вещество не будет диспергировано и получено в виде тонкой взшси.

Влияние смазочного материала на параметры трения в условиях граничной смазки оценивается, как правило, по величине адсорбции масла (среды) и по его химической активности. Адсорбционная способность учитывается преимущественно для случая использования химически инактивной смазочной среды. Так, Б. В. Дерягин предложил оценивать эффективность масляной пленки по критерию маслянистости, представляющему собой соотношение шероховатостей смазанной и несмазанной поверхностей. Другой критерий маслянистости характеризуется отношением разности работ сил трения несмазанных и смазанных поверхностей за время, ншбходимое для истирания пленки толщиной /г, к толщине этой пленки. Критерии маслянистости в основном определяются продолжительностью пребывания молекул масла (смазки) на поверхности трения и активностью смазки.

При электролитной коагуляции по концентрационному механизму (для сильно заряженных частиц) порог коагуляции Ск в соответстЕ1ИИ с правилом Дерягина - Ландау (обоснование эмпирического правила Шульце - Гарди) обратно пропорционален заряду 2 противоионо13 в шестой степени, т. е.

Теория двойного электрического слоя получила развитие в работах Фрумкина и Дерягина. Согласно их представлениям, внутреннему слою ионов двойного электрического слоя, получивших название потенциалобразующих, плотно примыкает некоторая часть противоположно заряженных ионов (рис. 50, а), называемых против о ионам и. Эта часть противоионов передвигается вместе с частицей и образует слой толщиной 6″, называемый адсорбционным. На рис. 50, а граница между такой частицей и средой обозначена пунктиром. Остальные противоио-ны располагаются в дисперсионной среде, где они распределены, как правило, диффузно.

Однако в последнее время получены экспериментальные данные, которые указывают на неприложимость в ряде случаев правила Шульце -Гарди в виде закона Дерягина - Ландау На опыте часто наблюдаются значительные отклонения от такой закономерности, а именно, в ряде случаев коагулирующее действие электролитов пропорционально валентности противоионов в степени меньше шести. Согласно И. Ф, Ефремову и О. Г. Усьярову, это отклонение от

Приложимость теории Дерягина и правила Шульце - Гарди для коагуляции высокомолекулярных соединений была показана на примере каучуковых латексов при взаимодействии их с электролитами разной валентности (Воюцкий, Нейман, Сандомир-ский).

Однако и в рассмотренном первом приближении теория дает хорошее согласие с экспериментальными данными (например, данными Шенкеля и Китченера, полученными на монодисперсных латексах), но может быть самым главным ее достижением является обоснование правила Шульце - Гарди, справедливо считающегося краеугольным камнем для проверки теорий устойчивости. Рассмотрим это объяснение. Анализ условий устойчивости дисперсных систем показывает, что граничные условия быстрой коагуляции в терминах теории Дерягина могут быть записаны как Утях = О и дОтах/ёк = 0, где С/тях - максимальная энергия (рис. XIII. 7). Эти условия выражают снижение высоты барьера до нуля.

В простейшем случае ц = onst. Коэф. Т. покоя, как правило, больше коэф. кинематического Т., так что усилие трогания с места (пусковой момент) больше сопротивления равномерному движению. Более точно физ. процессы при сухом Т. отражаются т.наз. двучлешавл законом трения Дерягина ц = F/(N + PgS), где / -дополнит, к N давление, вызванное силами межмол. взаимод. трущихся тел, а S-пов-еть фактич. контакта трущихся тел из-за волнистости и шероховатости пов-стей Т. контакт тел не бывает полным.

В работах 1937 и 1940 гг. Дерягин, используя формулы Фукса для скорости коагуляции взаимодействующих частиц, вывел критерий агрегативной устойчивости слабо заряженных коллоидных частиц для двух предельных случаев когда радиус частиц много меньше толщины ионных атмосфер , или, иначе говоря, характерной длины Дебая, и когда радиус частиц много больше толщины ионных атмосфер . Во втором случае критерий обобщает и количественно уточняет эмпирическое правило Эйлерса-Корфа , находящееся в согласии с рядом экспериментальных фактов. Тогда же было показано существование дальнего минимума на кривой, выражающей зависимость силы взаимодействия (отталкивания) от расстояния .

Известной трудностью для теории явилось то, что правило обратной шестой степени (уточненное Дерягиным и Ландау правило Гарди- Шульце) соблюдается и тогда, когда безразмерный потенциал поверхности не только невелик, но меньше единицы. Это возможно, как показали Глаз-ман с соавт. , если произведение потенциала на заряд противоиона мало меняется при изменении последнего. Количественное объяснение этому на основе независимости адсорбции противоионов от заряда было дано Усьяровым .

Наиболее разработанная теория устойчивости ионостабилизированных коллоидных растворов привела к ряду фундаментальных результатов . Теория сильно заряженных золей, рассматривающая только концентрационную коагуляцию, позволила обосновать правило Шульце - Гарди в виде закона 2 Дерягина - Лайдау. При умэ-ренных потенциалах коллоидных частиц пороги коагуляции изменяются с валентностью противоионов по закону 2 , где 2 а 6 , что также находится в соответствии. с правилом Шульце - Гарди. Теория позволила обосновать различные закономерности коагулирующего действия смесей электролитов и не находивший р нее никакого объяснения эффект синергизма . Следует также отметить, что на основании теории была показана неправомерность широко распространен-

Получив значения точного порога коагуляции для всех электролитов, выводят правило значности, для чего найденные значения порогов делят на наименьший порог коагуляции (для AI I3). Сопоставляют экспериментальное соотношение порогов коагуляции с теоретическим, вычисленным по правилу Дерягина - Ландау, согласно которому Y a b Vai u 11 1. Проводят анализ результатов сопоставления и оформляют работу в лабораторном журнале.

Смотреть страницы где упоминается термин Правило Дерягина : Синтетические полимеры в полиграфии (1961) — [ c.130 ]

Химия и химическая технология

Теория коагуляции Дерягина Ландау

Правило Дерягина - Ландау, выведенное авторами на основе представлений физической теории коагуляции, позволяет определить значение порога быстрой коагуляции, которое соответствует исчезновению энергетического барьера на кривой общего взаимодействия коллоидных частиц в зависимости от расстояния между ними. Рассчитанные по данному правилу значения порога коагуляции не всегда совпадают с экспериментальными значениями вследствие того, что коагулирующее действие ионов зависит не только от валентности, но и от специфической адсорбции, не учитываемой приведенным выше уравнением.

Блестящим подтверждением теории ДЛФО явился расчет Б. В. Дерягиным и Л. Д. Ландау (1941 г.) соотношения зиачений порогов коагуляции электролитами, содержащими ионы разной величины заряда. Оказалось, что порог коагуляции обратно пропорционален шестой степени заряда коагулирующего кона. Следовательно, значения порогов коагуляции для одно-, двух-, трех-и четырехзарядных ионов должны относиться, как

В этом состоит сущность теории электрической стабилизации и коагуляции дисперсных систем Дерягина, Ландау, Фервея и Овербека (теории ДЛФО).

Коагуляция эмульсий экспериментально исследована слабо, так как до последнего времени отсутствовали надежные методы изучения этого процесса. Зато теория коагуляции дисперсных систем разработана обстоятельно. Это так называемая теория ДЛФО (Дерягина - Ландау - Фервея - Овербека).

Покажем, что в случае общепринятого понимания движущей силы коагуляции (агрегации) условия (1.266) являются условиями самопроизвольной коагуляции и определяют порог устойчивости по концентрации и представляют обобщение теории устойчивости Дерягина и Ландау .

Теоретические представления о причинах, обусловливающих устойчивость лиофобных золей, получили дальнейшее развитие в работах Б. В. Дерягина и Л. Д. Ландау. Согласно теоретическим воззрениям и экспериментальным данным Дерягина, пленка жидкости, заключенная между двумя погруженными в нее твердыми телами, оказывает на них расклинивающее давление и тем самым препятствует их сближению. Действие быстро возрастает с утончением пленки и в большой степени понижается от присутствия электролитов. С этой точки зрения коагуляции частичек препятствует расклинивающее действие разделяющих их пленок. Введение электролитов в золь приводит к изменению двойного электрического слоя, сжатию его диффузной части и изменению прочности разделяющих частицы пленок и, тем самым, к нарушению стабильности золя. Стройно развитая математическая теория стабильности и коагуляции Дерягина и Ландау приводит к строгому физическому обоснованию правила валентности Шульце - Гарди и вместе с тем подводит физическую основу под эмпирические закономерности, обнаруженные Оствальдом.

Наряду с качественными соотношениями между коагуляционным взаимодействием и коагуляционными эффектами, между ними отмечается и количественная связь. У золей и суспензий порог коагуляции всегда выше, чем минимальная концентрация электролита, вызывающая коагуляционное взаимодействие, обнаруживаемое реологическими методами. Как известно, теория Дерягина-Ландау дает следующее выражение для порога коагуляции

Описание устойчивости лиофобных золей включает обстоятельное рассмотрение теории кинетики быстрой коагуляции по Смолу-ховскому, приближенное изложение теории устойчивости и коагуляции электролитами Дерягина-Ландау-Фервея-Овербека. При описании структуры пен особое внимание уделяется роли черных пленок, образующихся при определенных, критических концентрациях поверхностно-активных веществ. Здесь болгарским ученым также принадлежит ведущая роль.

По теории коагуляции Б. В. Дерягина и Л. Д. Ландау, при броуновском движении коллоидные частицы свободно сближаются на расстояние до 10 см (в среднем), однако дальнейшему их сближению препятствует так называемое расклинивающее давление, возникающее в тонких слоях воды, находящихся между двумя поверхностями. Расклинивающим давлением называют избыточное (по сравнению с гидростатическим) давление, действующее со стороны тонкого слоя на ограничивающие поверхности. В золях оно обусловлено в основном взаимным отталкиванием противоионов диффузного слоя сблизившихся частиц и, кроме того, силами молекулярного взаимодействия между поверхностями этих частиц н молекулами воды. Под влиянием электростатических полей,

Как уже отмечалось, в соответствии с теорией коагуляции Дерягина- Ландау значение Яо 10 м отвечает фиксации частиц на расстоянии ближней коагуляции (прочные коагуляционные контакты) м определяет положение частиц на расстоя-

Впервые качественный подход к изучению устойчивости золей наметили Кальман и Вильштеттер в 1932 г. Первые количественные расчеты были произведены Б. В. Дерягиным в конце 30-х годов и затем завершены в работе Б. В. Дерягина и Л. Д. Ландау (1941 г.). Аналогичный подход к изучению устойчивости коллоидных систем в дальнейшем был развит и в работах голландских исследователей Фервея, и Овербека. По начальным буквам основных авторов возникшей физической теории коагуляции эту теорию теперь часто называют теорией ДЛФО.

По теории коагуляции Б. В. Дерягина и Л. Д. Ландау, при броуновском движении коллоидные частицы свободно сближаются на расстояние до 10- см (в среднем), однако дальнейшему их сближению препятствует так называемое расклинивающее давление,

Впервые объяснение агрегативной устойчивости дисперсных систем и их коагуляции с количественным учетом суммарной энергии взаимодействия частиц было дано Дерягиным, а затем более детально Дерягиным и Ландау. Несколько позднее этот же подход к проблемам устойчивости и коагуляции осуществили Фервей и Овербек. Поэтому теория взаимодействия и коагуляции дисперсных частиц получила название теории Дерягина - Ландау-Фервея-Овербека или сокращенно ДЛФО.

В нашу задачу пе входит обсуждение многочисленных теорий коагуляции, развитых различными исследователями в конце прошлого века - начале нынешнего. Они представляют лишь- исторический интерес. В настоящее время общепринята физическая теория коагуляции лиофобных золей Дерягина - Ландау - Фервея - Овербека , в которой степень устойчивости системы определяется из баланса молекулярных и электростатических сил (см. гл. I). Хотя детальная разработка этой теории еще не завершена, она, благодаря принципиально верной трактовке роли поверхностных сил разной природы, позволила объяснить целый ряд коллоидно-химических явлений.

Разработка количественной теории устойчивости и коагуляции коллоидных систем, в частности, теории ДЛФО (теория Дерягина - Ландау - Фервея - Овербека) привела, начиная со второй мировой войны, к росту числа исследований различных коллоидных систем.

Н. П. Песков выяснил причину устойчивости коллоидных растворов, а Б. Дерягин и Л. Ландау разработали современную-теорию коагуляции. В области общей теории растворов большое значение для аналитической химии имеют работы Н. А. Измайлова, посвященные дифференцирующему действию растворителей. В них он использовал уже давно известное влияние растворителя на силу кислот и оснований установил, что существуют растворители, в которых это влияние проявляется особенно, специфично по отношению к кислотам разных классов, т. е. является дифференцирующим, и на большом опытном материале показал, как использовать это явление в аналитической химии.

Таким образом, теория Дерягина и Ландау более широка, нежели теория коагуляции. Она является теорией стабилизации коллоидных систем, из которой уже выводится и коагуляция коллоидов.

Процесс коагуляции в эмульсиях описывается теорией ДЛВО (Дерягин — Ландау — Вервей — Овербек). Сущность ее сводится к тому, что при наличии гидрофильных участков на глобулах дисперсной фазы и сближении частиц на расстояние действия дисперсных сил, они агрегируют в конгломераты частиц прог-рессивно возрастающего размера. Процесс этот происходит при снижении свободной энергии и идет самопроизвольно. Наличие структурно-механического барьера вокруг глобул дисперсной фазы не предохраняет их от сцепления наружными слоями, хотя зависит от вязкости внешней среды. Скорость коагуляции в концентрированной системе может быть оценена по кинетике нарастания ее структурно-механических свойств, если скорость коалесценции глобул мала по.сравнению со скоростью их коагуляции.

Агрегативная устойчивость и длительное существование лиофобных Д.с. с сохранением их св-в обеспечивается стабилизацией. Для высокодисперсных систем с жидкой дисперсионной средой используют введение в-в — стабилизаторов (электролитов, ПАВ, полимеров). В теории устойчивости Дерягина-Ландау-Фервея-Овербека (теории ДЛФО) осн. роль отводится ионно-электростатич. фактору стабилизации. Стабилизация обеспечивается электростатич. отталкиванием диффузных частей двойного электрич. слоя, к-рый образуется при адсорбции ионов электролита на пов-сти частиц. При нек-ром расстоянии между частицами отталкивание диффузных слоев обусловливает наличие минимума иа потенц. кривой (дальний, или вторичный, минимум см. рис.). Хотя этот минимум относительно неглубок, ои может препятствовать дальнейшему сближению частиц, притягиваемых силами межмолекуляриого взаимодействия. Ближний, или первичный, минимум соответствует прочному сцеплению частиц, при к-ром энергии теплового движения недостаточно для их разъединения. Сближаясь на расстояние, отвечающее этому минимуму, частицы объединяются в агрегаты, образование к-рых ведет к потере системой агрегативной устойчивости. При этом устойчивость системы к коагуляции определяется высотой энергетич. барьера.

Основные научные работы посвящены исследованию поверхностных явлений. Развил термодинамику систем с учетом введенного им понятия расклинивающего давления тонких прослоек. Впервые осуществил прямые измерения молекулярного притяжения твердых тел в функции расстояния и расклинивающего давления тонких слоев жидкостей. Теоретически обосновал влияние перекрытия ионных атмосфер на расклинивающее давление жидких прослоек и взаимодействие коллоидных частиц, что позволило ему создать теорию коагуляции и гетерокоагуляции коллоидных и дисперсных систем. Совместно с советским физиком Л. Д. Ландау создал (1928) теорию устойчивости лиофобных коллоидов, известную ныне под названием теории ДЛФО (теория устойчивости дисперсных систем Дерягина - Ландау - Фервея - Овербека). Обнаружил особые свойства граничных слоев жидкостей, определяемые их специфической (анизотропной) структурой. Развил теории термоосмоса и капиллярного осмоса в жидкостях, термофореза и диффузиофореза аэрозольных частиц. Автор двучленного закона внещнего трения. Под его руководством впервые синтезированы при низких давлениях нитевидные кристаллы алмаза - усы. Разработал методы наращивания алмазных кристаллов и порощков из газа при низких давлениях.

Применимость теории Дерягина - Ландау - Фервея - Овербека для описания стабильности и коагуляции дисперсий в неполярных средах обосновали Парфит и сотр. , которые тщательно проанализировали факторы, осложняющие количественное описание коагуляционных процессов.

Важвое П. я.- поверхностная активность, проявляющаяся в понижении поверхностного ватяжения при адсорбции одного из компонентов р-ра. Поверхностно-активные вещества имеют огромное практич. значение как регуляторы П. я. они влияют на смачивание, диспергирование, адгезию и др. Особенно велика роль ПАВ в коллоидных сист., обладающих большим избытком поверхностной энергии. Термодинамич. неустойчивость таких сист. проявляется в коагуляции и коалеси/гнции при сближении частиц, к-рому может препятствовать расклинивающее давление, возникающее вследствие перекрывания поверхностных слоев сближающихся частиц. На этой основе возникла физ. теория устойчивости коллоидов Дерягина - Ландау - Фервея - Овербека.

Наиболее разработанная теория устойчивости ионостабилизированпых коллоидных растворов привела к ряду фундаментальных результатов . Теория сильно заряженных золей, рассматривающая только концентрационную коагуляцию, позволила обосновать правило Шульце - Гарди в виде закона 2 Дерягина - Ландау. При умеренных потенциалах коллоидных частиц пороги коагуляции изменяются с валентностью противоионов по закону 2 , где 2 а Смотреть страницы где упоминается термин Теория коагуляции Дерягина Ландау : Адгезия жидкости и смачивания (1974) — [ c.196 ]

Правило ландау-дерягина

История развития коллоидной химии

Знакомимся ближе

Правила коагуляции

1. Все сильные электролиты, добавленные к золю в достаточном количестве, вызывают его коагуляцию.

Минимальная концентрация электролита, вызывающая коагуляцию золя за определённый короткий промежуток времени, называется порогом коагуляции.

Порог коагуляции можно рассчитать, зная концентрацию электролита-коагулятора С, объём добавленного электролита V, и объём золя V золя (обычно 10 мл): Величина, обратная порогу коагуляции, называется коагулирующей способностью электролита. Значит, чем меньше порог коагуляции, тем больше коагулирующая способность электролита.

2. Коагулирующим действием обладает не весь электролит, а только тот ион, заряд которого совпадает по знаку с зарядом противоионов мицеллы лиофобного золя (заряд коагулирующего иона противоположен заряду коллоидной частицы). Этот ион называютионом – коагулянтом.

3. Коагулирующая способность иона – коагулянта тем больше, чем больше заряд иона. Количественно эта закономерность описывается эмпирическим правилом Шульце – Гарди , а теоретически обоснованную связь между зарядом коагулирующего иона и порогом коагуляции дает теория Дерягина – Ландау.

Соотношение порогов коагуляции для одно -, двух — и трёхвалентных ионов равно (правило значности) :

Следовательно, коагулирующая способность трёхзарядного иона в 729 раз выше коагулирующей способности однозарядного иона.

В настоящее время установлены отклонения от правила Шульце – Гарди – Дерягина – Ландау (правило значности). На порог коагуляции кроме заряда оказывают влияние радиус коагулирующего иона, способность к адсорбции и гидратации, а также и природа иона, сопутствующего коагулирующему.

В случае многозарядных ионов возможен и такой эффект, как перезарядка частиц , т.е. изменение знака заряда и потенциала коллоидной частицы. Добавляемые ионы могут обмениваться с противоионами, замещая их и в диффузном и в адсорбционном слоях. При этом, если многозарядный ион является достаточно маленьким (например, Al 3+ , Th 4+ и др.), он замещает на поверхности частиц (в адсорбционном слое)неэквивалентное по заряду количество прежних ионов (сверхэквивалентная адсорбция). Например, вместо одного – двух ионов К + может оказаться ион Th 4+ . Поэтому, при достаточно высокой концентрации таких ионов создаваемый ими заряд на поверхности может стать больше по абсолютному значению, чем заряд потенциалопределяющих ионов. Это и означает изменение знака заряда и потенциала. Теперь такие ионы становятся потенциалопределяющими (вместо прежних) и вокруг частицы ориентируются иные противоионы.

4. Коагулирующая способность иона при одинаковом заряде тем больше, чем больше его кристаллический радиус .

Для однозарядных неорганических катионов коагулирующая способность убывает в следующем порядке:

Ag + > Cs + > Rb + > NH 4 + > K + > Na + > Li +

sites.google.com

Правила коагуляции электролитами

Коагуляция наблюдается при добавлении некоторого количества любого электролита, химически не реагирующего с дисперсной фазой системы. Наблюдениями Г.Шульце было установлено, что коагуляцию вызывает один из ионов электролита. Этот ион называют ионом-коагулятором. Причём, коагулирующая способность иона возрастает с увеличением заряда иона в геометрической прогрессии при соотношении 1:100:1000 (правило значности или правило Шульце). Ландау, Дерягиным установлено, что коагулирующая способность изменяется в соответствии 6-ой степени заряда ионов: 1 6:2 6:3 6 = 1:64:729.

Закономерности, найденные Шульце и Гарди объединены в одно правило (правило Шульце-Гарди): коагулирующим действием обладает тот ион электролита, заряд которого противоположен заряду гранулы и коагулирующее действие тем сильнее, чем выше заряд иона-коагулятора.

, моль/л.

Порог коагуляции зависит от ряда условий: от момента фиксирования после добавления электролита; от метода наблюдения; от концентрации исследуемого раствора и добавляемого электролита. Порог коагуляции определяют путем измерения светорассеяния или титрованием коллоидного раствора электролитом до начала явной коагуляции.

Величина, обратная порогу коагуляции называют коагулирующей способностью: . Она выражает объем золя, скоагулированного под действием 1 ммоль иона-коагулятора. Чем выше коагулирующая способность, тем меньше электролита для вызова коагуляции.

Коагулирующая способность зависит от атомной массы и заряда, т.е. плотности заряда иона. С увеличением атомной массы плотность заряда уменьшается, ионы становятся менее поляризованными. В результате утоньшается их сольватная оболочка. Поэтому большие ионы легче проникают в адсорбционный слой мицеллы и нейтрализуют заряд частицы, вызывая коагуляцию золя. Например, для золя иодида серебра состава xK + индифферентными электролитами являются KNO 3 , NaNO 3 , Ca(NO 3) 2 , Al(NO 3) 3 , Th(NO 3) 4 , а ионами-коагуляторами ионы K + , Na + , Ca 2+ , Al 3+ , Th 4+ . Коагулирующая способность ионов возрастает в ряду: Li + + + + + или Na + 2+ 3+ 4+ . Чем меньше гидратация (сольватация) катиона, тем меньше порог коагуляции, т.е. сильнее коагулирующее действие. Гидратная оболочка увеличивает размер иона и препятствует проникновению иона в адсорбционный слой. Коагулирующая способность органических соединений возрастает в соответствии правила Траубе.

Позже М.Гарди выявил, что заряд коагулирующего иона всегда противоположен заряду гранулы мицеллы (правило Гарди). Следовательно, отрицательная гранула коагулирует под влиянием положительно заряженных ионов, а положительно заряженная гранула – под действием анионов добавляемого электролита.

Для характеристики и сравнения различных электролитов используется понятие «порог коагуляции» − это минимальная концентрация добавляемого электролита, при которой начинается (наблюдается) коагуляция:

, моль/л.

Величина, обратная порогу коагуляции называют коагулирующей способностью:
. Она выражает объем золя, скоагулированного под действием 1 ммоль иона-коагулятора. Чем выше коагулирующая способность, тем меньше электролита для вызова коагуляции.

Теории коагуляции электролитами

Существующие теории коагуляции пытались ответить на 3 вопроса:

− почему коагуляция наступает при определенной концентрации электролита-коагулятора?

− почему при этом основную роль играет концентрация иона, противоположного заряду гранулы?

− почему влияние заряда иона-коагулятора подчиняется правилу Шульце-Гарди?

Адсорбционная теория Фрейндлиха. Согласно этой теории, ионы-коагуляторы на поверхности частиц адсорбируются в соответствии с изотермой адсорбции:
. Причем коагуляция наступает при постепенном, одинаковом понижении дзета-потенциала за счет адсорбции эквивалентного количества различных ионов. Вследствие нейтрализации уменьшается число зарядов потенциалопределяющих ионов, что приводит к снижению z -потенциала до критического значения.

Ограниченность теории заключается в том, что на практике не всегда наблюдается эквивалентная адсорбция, изотермы адсорбции различных ионов различны, иногда коагуляция затрагивает только диффузный слой.

Электростатическая теория Мюллера. Согласно этой теории введение электролита не изменяет общий заряд в ДЭС, а вызывает лишь сжатие диффузного слоя (вытеснение противоионов в адсорбционный слой). Уменьшение толщины ионной атмосферы приводит к снижению z -потенциала, что уменьшает стабильность золя.

Данная теория не учитывает адсорбцию введенных ионов и их вхождение в ДЭС.

Обе теории справедливы, обе имеют место при коагуляции, но на разных стадиях. Из-за ограниченности не могут быть использованы для объяснения других видов коагуляции.

Теория ДЛФО разработана Дерягиным, Ландау, Фервей и Овербеком (1941 г.). В соответствии с первыми буквами фамилий авторов носит название ДЛФО. Она учитывает потенциальную энергию частиц и равновесие э/статических сил, действующих между ними. При сближении частиц между ними возникают э/статические силы притяжения и отталкивания. Состояние системы определяется их соотношением. Если силы отталкивания больше, то система устойчива. Преобладание энергии притяжения вызывает коагуляцию. Энергия притяжения обусловлена силами Ван-дер-Ваальса и изменяется обратно пропорционально квадрату расстояния между частицами:
. Эти силы действуют только на очень малых расстояниях (1 . 10 − 10 – 1 . 10 − 11 м, т.е. 1 / 10 части размера коллоидных частиц). Поэтому коагуляция наблюдается только при сближении частиц на должном расстоянии. Такое сближение происходит в ходе теплового движения частиц и поэтому воздействия, увеличивающие скорость движения частиц и число столкновений (см. факторы вызывающие коагуляцию), способствуют коагуляции.

Рис.1. Перекрывание ионных атмосфер коллоидных частиц

По мере уменьшения расстояния между части-цами усиливаются силы электростатического отталкивания. Соприкосновению частиц препятствует и сольватная оболочка. Обычно силы электростатического отталкивания проявляются тогда, когда перекрываются диффузные слои (ионные сферы) одноименно заряженных частиц. Энергия отталкивания убывает с увеличением расстояния между ними.

Рис.2. Потенциальная кривая коагуляции

Для определения состояния системы вычисляют суммарную энергию (строят потенциальную кривую коагуляции). В ней имеются несколько участков: глубокий первичный минимум (потенциальная яма 1) в области малых расстояний, неглубокий вторичный минимум (потенциальная яма 2) в области больших расстояний. Они указывают на значительное преобладание энергии притяжения, т.е. в них U пр >> U отт.

В области средних расстояний находится максимум. Если он располагается над осью абсцисс, то между частицами действуют силы отталкивания, т.е. система агрегативно устойчива. При этом U отт >> U пр. Чем выше максимум, тем устойчивее система.

Для начала коагуляции достаточна предварительная частичная нейтрализация заряда частиц до определенного значения и разрушение сольватной оболочки. Это достигается введением электролита или удалением стабилизирующего электролита. Минимальный заряд частиц, при котором начинается коагуляция, называется критическим z -потенциалом (

0,03 В). При критическом значении дзета-потенциала кинетическая энергия движения частиц достаточна для преодоления сил остаточного электростатического отталкивания (U пр

U отт) и слипания частиц в агрегаты.

Согласно теории ДЛФО при быстрой коагуляции электролитами различают два механизма: концентрационная коагуляция и адсорбционная (нейтрализационная) коагуляция.

При концентрационной коагуляции добавляемые индифферентные ионы не изменяют величину -потенциала. Коагуляция происходит за счет сжатия диффузного слоя, т.е. вытеснения противоионов в адсорбционный слой либо за счет увеличения ионной силы раствора.

Адсорбционная коагуляция происходит в результате уменьшения -потенциала. Этот вид коагуляции вызывают электролиты, ионы которых могут (способны) адсорбироваться на поверхности частиц и имеющие противоположный к грануле заряд. Они проникая в адсорбционный слой, нейтрализуют потенциалопределяющие ионы и снижают -потенциал.

Если на поверхности микрокристаллов имеются свободные центры, то происходит достройка кристаллической решётки. Например, в случае золя х K + добавление KI вызывает коагуляцию за счет адсорбции иодид-ионов. При этом сначала - и -потенциалы увеличиваются. После насыщения центров адсорбция прекращается. Дальнейшее увеличение концентрации KI приводит к снижению -потенциала за счет сжатия диффузного слоя (вытеснения ионов калия в адсорбционный слой). При достижении определенной концентрации золь начинает коагулировать.

Если на поверхности отсутствуют свободные центры, то адсорбция не наблюдается и -потенциал не возрастает, но имеет место сжатие диффузного слоя.

При добавлении AgNO 3 неиндифферентными являются ионы серебра Ag + . Поскольку потенциалопределяющими ионами являются иодид- ионы, то добавление ионов серебра приводит к образованию труднорастворимого соединения AgI. В результате этого постепенно уменьшается число потенциалопределяющих, что приводит к снижению - и -потенциалов. При критическом значении -потенциала золь коагулирует по адсорбционному механизму. Дальнейшее прибавление AgNO 3 приводит к перезарядке и повышению положительного заряда гранулы за счет избирательной адсорбции ионов серебра с образованием нового ДЭС: х NO 3 ─ . При дальнейшеь прибавлении AgNO 3 золь коагулирует по концентрационному механизму под действием нитрат-ионов.

Элементарный акт коагуляции происходит в результате «ближнего взаимодействия» частиц. Осадки получаются плотными и необратимыми, так как энергия притяжения намного превышает энергию отталкивания. Здесь имеется непосредственный контакт между частицами, на рас- стояниях, соответствующих первому минимуму, идет образование кон- денсационно-кристаллизационных структур или грубых дисперсий. 2. Если высота барьера велика, а глубина второго минимума мала, частицы не могут преодолеть барьера и расходятся без взаимодействия. Это – случай «агрегативно устойчивой системы». Нарушить эту устойчивость можно двумя путями. а) Повышение кинетической энергии частиц приводит к увеличе- нию числа столкновений. Если энергия быстрых частиц превысит по- тенциальный барьер, то частицы могут слипнуться. Поэтому повыше- ние температуры может привести к коагуляции системы. б) Потенциальный барьер может быть уменьшен при добавлении в систему электролитов. При этом ДЭС сжимается за счет сжатия диф- фузной части, в результате чего частицы подходят друг к другу на меньшие расстояния, где усиливаются силы притяжения. Рис.4.3 Схема влияния электролита на коагуляциию: h2 < h1 3. Если глубина второго минимума достаточно велика то, незави- симо от высоты барьера, происходит так называемое «дальнее взаимо- действие» двух частиц, отвечающее второму минимуму. Вторичный минимум на участке ВС отвечает притяжению частиц через прослойку среды. Возникает взаимодействие на дальних расстоя- ниях, осадки получаются рыхлыми и обратимыми, так как минимум не глубокий. Второму минимуму соответствует явление флокуляции или образо- вание коагуляционных структур. Интерес к этим системам в последнее время велик: фиксация час- тиц во втором минимуме при достаточной концентрации дисперсной фазы может привести к превращении. Золя в полностью структуриро- ванную систему. Реальные твердые тела, составляющие основу материальной куль- туры человечества (строительные материалы, деревянные изделия, оде- жда, бумага, полимеры) – в подавляющем большинстве являются струк- турированными дисперсными системами. Вывод: Рассмотренный классический вариант теории Дерягина-Ландау да- ет хорошее согласие с экспериментальными данными. Но может быть самым главным ее достижением является обоснование правила Шульце- Гарди, которое справедливо считается краеугольным камнем для про- верки теорий устойчивости. const g = 6 – «закон шестой степени» Дерягина, устанавливающий Z зависимость порога коагуляции от заряда иона-коагулятора. 4.7 Зависимость скорости коагуляции от концентрации электролита. Медленная и быстрая коагуляция Медленная коагуляция – это когда электролита введено в таком количестве, что небольшой барьер отталкивания сохраняется (DU), здесь не все сталкивающие частицы коагулируют. Скорость ее зависит от концентрации электролита. Быстрая коагуляция – имеет место при полном исчезновении энергетического барьера, здесь каждое столкновение частиц приводит к коагуляции. Скорость быстрой коагуляции u – не зависит от концен- трации электролита. Рис.4.4 Зависимость скорости коагуляции от концентрации электролита При небольших количествах электролита скорость коагуляции близка к нулю (участок I). Затем скорость растет при увеличении количества электролита (участок II). Коагуляция на участке II является медленной и зависит от концентрации электролита. На участке III скорость достигает максимальное значение и уже не зависит от количества прибавляемого электролита. Такая коагуляция называется быстрой и соответствует полному исчезновению потенци- ального барьера коагуляции DU . Начало участка III отвечает порогу быстрой коагуляции g б, здесь величина x -потенциала падает до нуля. Порогу быстрой коагуляции на основании теории ДЛФО можно дать строгое определение: Порог быстрой коагуляции – это количество электролита, необхо- димое для снижения энергетического барьера до нуля. 4.8 Изменение агрегативной устойчивости при помощи электролитов. Концентрационная и нейтрализационная коагуляция Одним из способов изменения агрегативной устойчивости золей является введение электролитов. Электролиты в состоянии изменить структуру ДЭС и его диффуз- ный слой, снизить или увеличить x -потенциал и электростатическое от- талкивание, т.е. способны вызвать или предотвратить коагуляцию. Воз- можны концентрационная и нейтрализационная коагуляция электроли- тами. Причина их одна и та же – снижение x -потенциала, ослабление электростатического отталкивания. Однако механизм снижения x - потенциала различный. Рис.4.5 Падение потенциала в ДЭС до (кривая 1) и после (кривая 2) введения электролита в процессе концентрационной (а) и нейтрализационной (б) коагуляции j1 и j 2 , x1 и x 2 – значения полного и электрокинетического по- тенциалов, соответственно, до и после введения электролитов; 3 и 4 – направления адсорбции ионов электролита; х – расстояние от твердой поверхности в глубь жидкости. 1. Концентрационная коагуляция наблюдается при больших заря- дах поверхности, когда j0 ³ 100 мВ, и проводится она в основном ин- дифферентными электролитами. Эти электролиты способствуют сжа- тию диффузной части ДЭС, снижению x -потенциала (x 2 < x1), но не изменяют полный потенциал j0 . Благодаря этому (сжатию ДЭС) частицы сближаются и межмоле- кулярные силы притяжения начинают превалировать, что и вызывает слияние частиц. Правило Шульце-Гарди подтвердили теоретически Б.В. Дерягин и Л.Д. Ландау, представив расклинивающее давление как суммарный эф- фект сил отталкивания и притяжения, что позволило им вывести урав- нение, связывающее порог коагуляции с зарядом иона-коагулятора. B * e (kб T) 5 Cкр = g = , (1) A2 e 6 Z 6 где B * – константа; e – диэлектрическая постоянная; kб – константа Больцмана; T – абсолютная температура; A – постоянная Ван-дер- Ваальса; e – заряд электрона; Z – заряд иона-коагулятора. Это уравнение (4) хорошо описывает зависимость порога коагуля- ции от заряда иона-коагулятора для сильно заряженных поверхностей и соответствует эмпирическому правилу Шульце-Гарди. В уравнение (1) не входит потенциал поверхности. Таким образом, правило Шульце-Гарди справедливо в случае концентрационной коагу- ляции. 2. Нейтрализационная коагуляция происходит при малых потен- циалах поверхности (j0 £ 100 м В) под действием неиндифферентных, т.е. родственных электролитов. Особенно эффективны электролиты, со- держащие ионы большого заряда и большого радиуса, то есть хорошо адсорбирующиеся. При введении таких электролитов идет частичная нейтрализация полного потенциала поверхности при адсорбции противоионов, что приводит к снижению не только полного потенциала j0 , но и j " и x - потенциала, а также к сжатию диффузной части ДЭС. Для случая нейтрализационной коагуляции при j0 £ 100 м В авторы теории ДЛФО нашли выражение для порога коагуляции: " x 4 Cкр = g = k 2 . (2) Z Из уравнения (2) следует, что для нейтрализационной коагуляции критическая концентрация зависит от x -потенциала и, следовательно, от полного потенциала поверхности j0 . Из уравнения (2) также следует: при малых j0 порог коагуляции обратно пропорционален Z 2 коагулирующего иона. Этот случай соответствует эмпирическому правилу Эйлерса- Корфа, которое оказывается справедливым для слабо заряженных по- верхностей. В реальных системах одновременно могут действовать оба меха- низма коагуляции, поэтому зависимость порога коагуляции от заряда иона-коагулятора оказывается промежуточной. 4.9 Особые явления при коагуляции. Явление неправильных рядов Коагулирующая сила ионов зависит не только от заряда и радиуса коагулирующих ионов, но и от их специфической адсорбции. Кроме того, многовалентные ионы могут вызвать перезарядку по- верхности и привести к чередованию зон устойчивого и неустойчивого состояния системы. Это явление получило название явления неправиль- ных рядов. Суть: при добавлении электролитов вначале наблюдается ус- тойчивость золя, затем – коагуляция. Далее – вновь устойчивость, и, на- конец, при избытке электролита – опять коагуляция. Это объясняется тем, что многовалентные ионы (Fe3+, Al3+, Th4+) перезаряжают частицы и переводят систему из неустойчивого в устой- чивое состояние. Введение электролита AlCl3 в золь сернистого мышь- яка, имеющего первоначально отрицательный заряд. Рис.4.6 Схема неправильных рядов На рис. 4.6 можно выделить две зоны устойчивого состояния (0-1, 2-3) и две зоны коагуляции (1-2, 3-4). Зона 0-1 – электролита добавлено недостаточно, устойчивое со- стояние. Зона 1-2 – электролита добавлено достаточно, x = xкр. Идет коагу- ляция. Далее начинается перезарядка поверхности, x -потенциал приоб- ретает противоположное значение. При достижении x > + xкр вновь на- ступает устойчивое состояние (участок 2-3). На участке 3-4 вновь идет коагуляция системы по схеме концен- трированной коагуляции. В отличие от участка 1-2, где коагуляция идет ионами Al3+, в зоне 3-4 коагуляция проводится ионами Cl–, так как заряд частиц стал поло- жительным. 4.10 Коагуляция смесью электролитов В промышленных условиях для коагуляции используют не один электролит, а смесь нескольких электролитов. Коагулирующее действие смесью двух электролитов часто бывает неаддитивным. Иногда требуется электролита в смеси больше, чем одного из них – это явление антагонизма. Если же смесь электролитов эффективнее одного электролита, то проявляется явление синергизма, их в смеси надо меньше, чем каждого в отдельности. При аддитивном действии электролиты коагулируют независимо друг от друга. Для характеристики смеси двух электролитов удобно пользоваться графиком зависимости порога коагуля- ции g 1 от порога коагуляции g 2 . При аддитивном действии зависи- мость g 1 – g 2 – линейна. Синергизм характеризуется кри- вой 2, если первый электролит берется в количестве g 1 / 2 , то второй – в коли- честве g 2 < g 2 / 2 . Рис.4.7 График зависимости порога коагуляции: 1 – аддитивное действие; 2 – синергетическое действие; 3 – антагонистическое действие Синергизм электролитов широко используют на практике для коа- гуляции больших количеств дисперсных систем. 4.11 Применение коагулянтов и флокулянтов в процессах очистки воды Явление коагуляции тесно связано с проблемой удаления загрязне- ний из водных сред. В основе многих методов очистки от в.д.с – загрязнений лежит яв- ление потери системой агрегативной устойчивости путем объединения частиц под внесением специально вводимых реагентов: коагулянтов и флокулянтов. Это укрупнение частиц приводит к потере седиментационной ус- тойчивости системы и образованию осадков. В настоящее время подбор реагентов для коагуляции основывается преимущественно на эмпирических исследованиях. Чаще всего коагулирование загрязнений воды производится элек- тролитами, которые содержат многозарядные ионы (Al3+, Fe3+). Ранее процесс осветления воды объясняли нейтрализацией много- валентными катионами, заряженных, как правило, отрицательно, частиц природных вод. Однако коагуляция эти ионами связана с процессами их гидролиза, в результате которого возникают полиядерные аквагидро- комплексы, обладающие более сильной коагулирующей способностью, чем ионы. Сам процесс коагуляции подобен процессу флокуляции ВМС. В процессах водоочистки постепенно расширяется применение по- лимерных флокулянтов (ВМС): длинная молекула полимера адсорбиру- ется двумя концами на двух разных частицах дисперсной фазы и соеди- няет их «мостиком». Получается рыхлый агрегат – флоккула. Здесь час- тицы не имеют непосредственного контакта между собой. Флокулянты бывают природными и синтетическими, неионоген- ными и ионогенными. В последнем случае флокуляция возможна не только по механизму мостикообразования, но и путем нейтрализации заряда частиц противоположно заряженными ионами полиэлектролита. На празднике часто эффективным оказывается совместное приме- нение коагулянтов и флокулянтов. 4.12 Кинетика коагуляции Процесс коагуляции протекает во времени. Отсюда вытекает пред- ставление о скорости коагуляции. Скорость коагуляции – это измене- ние частичной концентрации в единице объема в единицу времени. Раз- личают быструю коагуляцию, когда каждое столкновение частиц при- водит к их слипанию и медленную коагуляцию, если не все столкновения частиц являются эффективными. Термины «быстрая» и «медленная» коагуляции условны и не связаны со скоростью процесса. При опреде- ленных условиях быстрая коагуляция может протекать очень медленно и, наоборот, медленная коагуляция может идти весьма быстро. Теория кинетики быстрой коагуляции предложена С. Смолуховским. Скорость процесса уменьшения общего числа частиц (n) во времени он рассматривает как скорость реакции второго порядка, поскольку слипание частиц происходит при столкновении двух частиц, dn = k × n2 . (3) dt После интегрирования этого уравнения получим 1æ1 1 ö k= ç - ÷ (4) t è n n0 ø или n0 n= , (5) 1+ kn0t где n0 – общее число частиц в единице объема золя до коагуляции, n – число частиц к моменту времени t, k – константа скорости процесса коагуляции, которая вычисляется по уравнению (5.5). Константа k свя- зана с коэффициентом диффузии частиц D и с расстоянием d, на кото- ром действуют силы притяжения между частицами, уравнением k = 4pDd . (6) Подставив в это уравнение вместо D его значение из уравнения Эйнштейна и учитывая, что d = 2r, получим 4 RT 3 –1 k= ,м с. (7) 3h Из формулы (7) видно, что величина k не зависит от начальной концентрации золя и от размера частиц и поэтому не меняется при их слипании. Константа скорости процесса коагуляции – постоянная толь- ко для данной коллоидной системы. Если величина константы k, вычис- ленная из экспериментальных данных, не совпадает с величиной, полу- ченной из теоретической формулы (7), то это значит, что в системе про- исходит не быстрая, а медленная коагуляция. С. Смолуховский предложил формулы, позволяющие определить с к о л ь к о ч а с т и ц того или иного порядка (первичных, вторичных и т.д.) имеется в золе ко времени t. Причем для того, чтобы исключить входящие в эти формулы трудно определяемые величины D и d, он ввел в них так называемое время половинной коагуляции q (период коагуля- ции), за которое начальная концентрация первичных частиц уменьшает- ся вдвое. Тогда для первичных частиц n0 n1 = , (8) (1 + t q) 2 для вторичных частиц n0 t q n2 = (9) (1 + t q) 3 и для частиц m-го порядка n0 (t q) m-1 nm = . (10) (1 + t q) m+1 На рис. 4.8 уравнения (8-10) изображены графически. Получен- ные кривые наглядно показывают распределение числа частиц в бы- стро коагулирующем золе. В на- чальный момент, т. е. когда t = 0, все частицы – первичные: n = n1 = n0, а n2 = n3 = n4 = 0. Через некоторое время количество всех частиц равно n, число первичных n1 уменьшается, но начинают появ- ляться двойные, тройные и др. час- тицы. По мере коагуляции эти час- тицы также постепенно исчезают, уступая место частицам высших порядков – более крупным агрега- там. Поэтому кривые, выражающие Рис.4.8 Распределение числа частиц при изменение числа частиц различных быстрой коагуляции золя порядков, со временем приобрета- ют ясно выраженные максимумы. Кривые, выражающие распределение числа частиц во времени, строят также в координатах n = f (t / q) , n = f (t) или в линейной форме – в координатах 1 / n = f (t) . Согласно теории С. Смолуховского, время половинной коагуляции не зависит от времени коагуляции. Чтобы проверить применимость тео- рии, по экспериментальным данным вычисляют q для нескольких зна- чений t по формуле, полученной из (4), . (11) Если величина q не остается постоянной при различных t, то это означает, что в системе происходит не быстрая, а медленная коагуля- ция. 4.13 Примеры коагуляции. Образование почв Мы рассмотрели развитие основных идей, определяющих содержа- ние проблемы устойчивости. Так, одна из важнейших задач заключается в сохранении устойчивого состояния суспензий, эмульсий и других объектов, проходящих в процессе переработки через сложные системы производственных агрегатов. Не менее важной для народного хозяйства является и обратная задача – скорейшего разрушения дисперсных сис- тем: дымов, туманов, эмульсий, промышленных и сточных вод. Огра- ничимся здесь иллюстрацией многообразия и сложности коагуляцион- ных явлений на примерах, связанных с процессами почвообразования. Почвы образуются при разрушении горных пород в результате вы- ветривания, выщелачивания, гидролиза и т. д. Эти процессы приводят к образованию окислов: как нерастворимых, типа SiO2, Al2O3, Fe2O3 (точ- нее – их гидроокисей), так и растворимых, типа RO и R2O (где R – ме- талл). Из-за значительной гидратации нерастворимых элементов почвы и дальнему взаимодействию в процессе взаимной коагуляции образуют- ся структурированные коагуляты, близкие по свойствам к гелям, назы- ваемые коагелями. Эти коллоидно-химические процессы определяют все многообразие существующих типов почв. Например, подзолистые почвы, типичные для северных районов нашей страны, образуются в условиях малого содержания органических остатков (гуминовых веществ) и большой влажности, вымывающей окислы основного характера (RO и R2O). Остающиеся коагели характе- ризуются высоким содержанием SiO2 и малым количеством питатель- ных веществ, необходимых для растений. Наоборот, черноземные почвы средней полосы России образуются в условиях малой влажности. В этих условиях ионы Са2+ и Mg2+ не вы- мываются и, взаимодействия с гуминовыми кислотами, образуют нерас- творимые высокомолекулярные коллоидные частицы – гуматы Са2+ и Mg2+. В процессе взаимной коагуляции положительно заряженных час- тиц R2O3 с отрицательно заряженными гуматами и SiO2 возникают

Касающееся технологии многих лекарственных форм.

Формулировка правила:

Объяснение правила

Частицы лекарственного вещества имеют трещины (щели Гриффитса), в которые проникает жидкость . Жидкость оказывает расклинивающее давление на частицу, которое превосходит стягивающие силы, что и способствует измельчению. Если измельчаемое вещество является набухающим, то его тщательно измельчают в сухом виде и лишь потом добавляют жидкость. После измельчения лекарственного вещества используют прием взмучивания с целью фракционирования частиц. Взмучивание состоит в том, что при смешивании твердого вещества с жидкостью, в 10-20 раз по объему превосходящей его массу, мелкие частицы находятся во взвешенном состоянии, а крупные оседают на дно. Этот эффект объясняется разной скоростью седиментации частиц разных размеров (закон Стокса). Взвесь наиболее измельченных частиц сливают, а осадок повторно измельчают и взмучивают с новой порцией жидкости до тех пор, пока весь осадок не перейдет в тонкую взвесь.

Применение в технологии

Bismuthi subnitratis ana 3,0

Aquae destillatae 200 ml

M.D.S. Протирать кожу лица

Значение рецепта: в подставку отмеривают 200 мл очищенной воды. В ступке измельчают 3 г крахмала и 3 г основного нитрата висмута с 3 мл воды (по правилу Дерягина), затем добавляют 60-90 мл воды, смесь взмучивают и оставляют на несколько минут. Осторожно сливают тонкую взвесь с осадка во флакон . Влажный осадок дополнительно растирают пестиком , смешивают с новой порцией воды, сливают. Измельчение и взмучивание повторяют, пока все крупные частицы не превратятся в тонкую взвесь .

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Правило Дерягина" в других словарях:

    Правило Дерягина правило, разработанное химиком Дерягиным Б. В., касающееся технологии многих лекарственных форм. Само правило звучит так: «Для получения тонко измельченного лекарственного вещества при его диспергировании рекомендуется добавлять … Википедия

    Борис Владимирович Дерягин Дата рождения: 9 августа 1902(1902 08 09) Место рождения: Москва Дата смерти: 16 мая 1994(1994 05 16) (91 год) … Википедия

    Статья по тематике Индуизм История · Пантеон Направления … Википедия

    Педофилия … Википедия

    МКБ 10 F … Википедия

    Одна из составных частей общей структуры преступности, в которую входят деяния, связанные с физическим и психическим насилием над личностью или угрозой его применения. Насильственная преступность может пониматься в широком смысле при этом в неё… … Википедия

    Эксгибиционизм (лат. exhibeo выставлять, показывать) форма отклоняющегося сексуального поведения, когда сексуальное удовлетворение достигается путём демонстрации половых органов незнакомым лицам, обычно противоположного пола, а также в публичных… … Википедия

    Это имеющие негативную эмоциональную окраску представления личности (ощущения неудовлетворённости, страха, греха), связанные с половыми отношениями, оказывающие существенное, а иногда и определяющее влияние как на половую жизнь, так и в целом на… … Википедия

    - (от лат. coagulatio свертывание, сгущение), объединение частиц дисперсной фазы в агрегаты вследствие сцепления (адгезии) частиц при их соударениях. Соударения происходят в результате броуновского движения, а также седиментации, перемещения частиц … Химическая энциклопедия

Касающееся технологии многих лекарственных форм.

Формулировка правила:

Объяснение правила

Частицы лекарственного вещества имеют трещины (щели Гриффитса), в которые проникает жидкость . Жидкость оказывает расклинивающее давление на частицу, которое превосходит стягивающие силы, что и способствует измельчению. Если измельчаемое вещество является набухающим, то его тщательно измельчают в сухом виде и лишь потом добавляют жидкость. После измельчения лекарственного вещества используют прием взмучивания с целью фракционирования частиц. Взмучивание состоит в том, что при смешивании твердого вещества с жидкостью, в 10-20 раз по объему превосходящей его массу, мелкие частицы находятся во взвешенном состоянии, а крупные оседают на дно. Этот эффект объясняется разной скоростью седиментации частиц разных размеров (закон Стокса). Взвесь наиболее измельченных частиц сливают, а осадок повторно измельчают и взмучивают с новой порцией жидкости до тех пор, пока весь осадок не перейдет в тонкую взвесь.

Применение в технологии

Bismuthi subnitratis ana 3,0

Aquae destillatae 200 ml

M.D.S. Протирать кожу лица

Значение рецепта: в подставку отмеривают 200 мл очищенной воды. В ступке измельчают 3 г крахмала и 3 г основного нитрата висмута с 3 мл воды (по правилу Дерягина), затем добавляют 60-90 мл воды, смесь взмучивают и оставляют на несколько минут. Осторожно сливают тонкую взвесь с осадка во флакон . Влажный осадок дополнительно растирают пестиком , смешивают с новой порцией воды, сливают. Измельчение и взмучивание повторяют, пока все крупные частицы не превратятся в тонкую взвесь .

Напишите отзыв о статье "Правило Дерягина"

Примечания

Отрывок, характеризующий Правило Дерягина

Она провела его в темную гостиную и Пьер рад был, что никто там не видел его лица. Анна Михайловна ушла от него, и когда она вернулась, он, подложив под голову руку, спал крепким сном.
На другое утро Анна Михайловна говорила Пьеру:
– Oui, mon cher, c"est une grande perte pour nous tous. Je ne parle pas de vous. Mais Dieu vous soutndra, vous etes jeune et vous voila a la tete d"une immense fortune, je l"espere. Le testament n"a pas ete encore ouvert. Je vous connais assez pour savoir que cela ne vous tourienera pas la tete, mais cela vous impose des devoirs, et il faut etre homme. [Да, мой друг, это великая потеря для всех нас, не говоря о вас. Но Бог вас поддержит, вы молоды, и вот вы теперь, надеюсь, обладатель огромного богатства. Завещание еще не вскрыто. Я довольно вас знаю и уверена, что это не вскружит вам голову; но это налагает на вас обязанности; и надо быть мужчиной.]
Пьер молчал.
– Peut etre plus tard je vous dirai, mon cher, que si je n"avais pas ete la, Dieu sait ce qui serait arrive. Vous savez, mon oncle avant hier encore me promettait de ne pas oublier Boris. Mais il n"a pas eu le temps. J"espere, mon cher ami, que vous remplirez le desir de votre pere. [После я, может быть, расскажу вам, что если б я не была там, то Бог знает, что бы случилось. Вы знаете, что дядюшка третьего дня обещал мне не забыть Бориса, но не успел. Надеюсь, мой друг, вы исполните желание отца.]
Пьер, ничего не понимая и молча, застенчиво краснея, смотрел на княгиню Анну Михайловну. Переговорив с Пьером, Анна Михайловна уехала к Ростовым и легла спать. Проснувшись утром, она рассказывала Ростовым и всем знакомым подробности смерти графа Безухого. Она говорила, что граф умер так, как и она желала бы умереть, что конец его был не только трогателен, но и назидателен; последнее же свидание отца с сыном было до того трогательно, что она не могла вспомнить его без слез, и что она не знает, – кто лучше вел себя в эти страшные минуты: отец ли, который так всё и всех вспомнил в последние минуты и такие трогательные слова сказал сыну, или Пьер, на которого жалко было смотреть, как он был убит и как, несмотря на это, старался скрыть свою печаль, чтобы не огорчить умирающего отца. «C"est penible, mais cela fait du bien; ca eleve l"ame de voir des hommes, comme le vieux comte et son digne fils», [Это тяжело, но это спасительно; душа возвышается, когда видишь таких людей, как старый граф и его достойный сын,] говорила она. О поступках княжны и князя Василья она, не одобряя их, тоже рассказывала, но под большим секретом и шопотом.

Правило Дерягина - правило, разработанное химиком Б. В. Дерягиным , касающееся технологии многих лекарственных форм.

Формулировка правила:

Для получения тонко измельченного лекарственного вещества при его диспергировании рекомендуется добавлять растворитель в половинном количестве от массы измельчаемого лекарственного вещества.

Объяснение правила

Частицы лекарственного вещества имеют трещины (щели Гриффитса), в которые проникает жидкость . Жидкость оказывает расклинивающее давление на частицу, которое превосходит стягивающие силы, что и способствует измельчению. Если измельчаемое вещество является набухающим, то его тщательно измельчают в сухом виде и лишь потом добавляют жидкость. После измельчения лекарственного вещества используют прием взмучивания с целью фракционирования частиц. Взмучивание состоит в том, что при смешивании твердого вещества с жидкостью, в 10-20 раз по объему превосходящей его массу, мелкие частицы находятся во взвешенном состоянии, а крупные оседают на дно. Этот эффект объясняется разной скоростью седиментации частиц разных размеров (закон Стокса). Взвесь наиболее измельченных частиц сливают, а осадок повторно измельчают и взмучивают с новой порцией жидкости до тех пор, пока весь осадок не перейдет в тонкую взвесь.

Применение в технологии

Bismuthi subnitratis ana 3,0

Aquae destillatae 200 ml

M.D.S. Протирать кожу лица

Значение рецепта: в подставку отмеривают 200 мл очищенной воды. В ступке измельчают 3 г крахмала и 3 г основного нитрата висмута с 3 мл воды (по правилу Дерягина), затем добавляют 60-90 мл воды, смесь взмучивают и оставляют на несколько минут. Осторожно сливают тонкую взвесь с осадка во