Формула интерполяции между двумя значениями. Определение промежуточного значения методом линейной интерполяции Расчет чисел методом интерполяции

Интерполяция. Введение. Общая постановка задачи

При решении различных практических задач результаты исследований оформляются в виде таблиц, отображающих зависимость одной или нескольких измеряемых величин от одного определяющего параметра (аргумента). Такого рода таблицы представлены обычно в виде двух или более строк (столбцов) и используются для формирования математических моделей.

Таблично заданные в математических моделях функции обычно записываются в таблицы вида:

Y1 (X)

Y(Х0 )

Y(Х1 )

Y(Хn )

Ym (X)

Y(Х0 )

Y(Х1 )

Y(Хn )

Ограниченность информации, представленной такими таблицами, в ряде случаев требует получить значения функций Y j (X) (j=1,2,…,m) в точках Х , не совпадающих с узловыми точками таблицы Х i (i=0,1,2,…,n) . В таких случаях необходимо определить некоторое аналитическое выражение φ j (Х) для вычисления приближенных значений исследуемой функции Y j (X) в произвольно задаваемых точках Х . Функция φ j (Х) используемая для определения приближенных значений функции Y j (X) называется аппроксимирующей функцией (от латинского approximo - приближаюсь). Близость аппроксимирующей функции φ j (Х) к аппроксимируемой функции Y j (X) обеспечивается выбором соответствующего алгоритма аппроксимации.

Все дальнейшие рассмотрения и выводы мы будем делать для таблиц, содержащих исходные данные одной исследуемой функции (т. е. для таблиц с m=1 ).

1. Методы интерполяции

1.1 Постановка задачи интерполяции

Наиболее часто для определения функции φ(Х) используется постановка, называемая постановкой задачи интерполяции.

В этой классической постановке задачи интерполяции требуется определить приближенную аналитическую функцию φ(Х) , значения которой в узловых точках Х i совпадают со значениями Y(Х i ) исходной таблицы, т.е. условий

ϕ (X i ) = Y i (i = 0,1,2,..., n )

Построенная таким образом аппроксимирующая функция φ(Х) позволяет получить достаточно близкое приближение к интерполируемой функции Y(X) в пределах интервала значений аргумента [Х 0 ; Х n ], определяемого таблицей. При задании значений аргумента Х , не принадлежащих этому интервалу, задача интерполяции преобразуется в задачу экстраполяции . В этих случаях точность

значений, получаемых при вычислении значений функции φ(Х), зависит от расстояния значения аргумента Х от Х 0 , если Х < Х 0 , или от Х n , если Х > Х n .

При математическом моделировании интерполирующая функция может быть использована для вычисления приближенных значений исследуемой функции в промежуточных точках подынтервалов [Х i ; Х i+1 ]. Такая процедура называется уплотнением таблицы .

Алгоритм интерполяции определяется способом вычисления значений функции φ(Х). Наиболее простым и очевидным вариантом реализации интерполирующей функции является замена исследуемой функции Y(Х) на интервале [Х i ; Х i+1 ] отрезком прямой, соединяющим точки Y i , Y i+1 . Этот метод называется методом линейной интерполяции.

1.2 Линейная интерполяция

При линейной интерполяции значение функции в точке Х , находящейся между узлами Х i и Х i+1 , определяется по формуле прямой, соединяющей две соседние точки таблицы

Y(X) = Y(Xi )+

Y(Xi + 1 ) − Y(Xi )

(X − Xi ) (i = 0,1,2, ...,n),

X i+ 1 − X i

На рис. 1 приведен пример таблицы, полученной в результате измерений некоторой величины Y(X) . Строки, исходной таблицы выделены заливкой. Справа от таблицы построена точечная диаграмма, соответствующая этой таблице. Уплотнение таблицы выполнено благодаря вычислению по формуле

(3) значений аппроксимируемой функции в точках Х , соответствующих серединам подынтервалов (i=0, 1, 2, … , n ).

Рис.1. Уплотненная таблица функции Y(X) и соответствующая ей диаграмма

При рассмотрении графика на рис. 1 видно, что точки, полученные в результате уплотнения таблицы по методу линейной интерполяции, лежат на отрезках прямых, соединяющих точки исходной таблицы. Точность линейной

интерполяции, существенно зависит от характера интерполируемой функции и от расстояния между узлами таблицы X i, , X i+1 .

Очевидно, что если функция плавная, то, даже при сравнительно большом расстоянии между узлами, график, построенный путем соединения точек отрезками прямых, позволяет достаточно точно оценить характер функции Y(Х). Если же функция изменяется достаточно быстро, а расстояния между узлами большие, то линейная интерполирующая функция не позволяет получить достаточно точное приближение к реальной функции.

Линейная интерполирующая функция может быть использована для общего предварительного анализа и оценки корректности результатов интерполяции, получаемых затем другими более точными методами. Особенно актуальной такая оценка становится в тех случаях, когда вычисления выполняются вручную.

1.3 Интерполяция каноническим полиномом

Метод интерполяции функции каноническим полиномом основывается на построении интерполирующей функции как полинома в виде [ 1 ]

ϕ (x) = Pn (x) = c0 + c1 x + c2 x 2 + ... + cn x n

Коэффициенты с i полинома (4) являются свободными параметрами интерполяции, которые определяются из условий Лагранжа:

Pn (xi ) = Yi , (i = 0 , 1 , ... , n)

Используя (4) и (5) запишем систему уравнений

C x + c x 2

C x n = Y

C x + c x 2

C x n

C x 2

C x n = Y

Вектор решения с i (i = 0, 1, 2, …, n ) системы линейных алгебраических уравнений (6) существует и может быть найден, если среди узлов х i нет совпадающих. Определитель системы (6) называется определителем Вандермонда1 и имеет аналитическое выражение [ 2 ].

1 Определителем Вандермонда называется определитель

Он равен нулю тогда и только тогда, когда xi = xj для некоторых . (Материал из Википедии - свободной энциклопедии)

Для определения значений коэффициентов с i (i = 0, 1, 2, … , n)

уравнений (5) можно записать в векторно-матричной форме

A* C = Y ,

где А, матрица коэффициентов, определяемых таблицей степеней вектора аргументов X= (x i 0 , x i , x i 2 , … , x i n ) T (i = 0, 1, 2, … , n)

x0 2

x0 n

xn 2

xn n

С - вектор-столбец коэффициентов с i (i = 0, 1, 2, … , n), а Y - вектор-столбец значений Y i (i = 0, 1, 2, … , n) интерполируемой функции в узлах интерполяции.

Решение этой системы линейных алгебраических уравнений может быть получено одним из методов, описанных в [ 3 ]. Например, по формуле

С = A− 1 Y ,

где А -1 - матрица обратная матрице А . Для получения обратной матрицы А -1 можно воспользоваться функцией МОБР() , входящей в набор стандартных функций программы Microsoft Excel.

После того, как будут определены значения коэффициентов с i , используя функцию (4), могут быть вычислены значения интерполируемой функции для любого значения аргумента х .

Запишем матрицу А для таблицы, приведенной на рис.1, без учёта строк уплотняющих таблицу.

Рис.2 Матрица системы уравнений для вычисления коэффициентов канонического полинома

Используя функцию МОБР() , получим матрицу А -1 обратную матрице А (рис. 3). После чего, по формуле (9) получим вектор коэффициентов С={c 0 , c 1 , c 2 , …, c n } T , приведенный на рис. 4.

Для вычисления значений канонического полинома в ячейку столбца Y канонич , соответствующую значению х 0 , введем преобразованную к следующему виду формулу, соответствующую нулевой строке системы (6)

=((((c 5

* х 0 + c 4 )* х 0 + c 3 )* х 0 + c 2 )* х 0 + c 1 )* х 0 + c 0

C0 +x *(c1 + x *(c2 + x*(c3 + x*(c4 + x* c5 ))))

Вместо записи " c i " в формуле, вводимой в ячейку таблицы Excel, должна стоять абсолютная ссылка на соответствующую ячейку, содержащую этот коэффициент (см. рис. 4). Вместо "х 0 " - относительная ссылка на ячейку столбца Х (см. рис. 5).

Y канонич (0) значения, совпадающего со значением в ячейке Y лин (0) . При протягивании формулы, записанной в ячейку Y канонич (0), должны также совпасть и значения Y канонич (i) , соответствующие узловым точкам исходной

таблицы (см. рис.5).

Рис. 5. Диаграммы, построенные по таблицам линейной и канонической интерполяции

Сравнение графиков функций, построенных по таблицам, вычисленным по формулам линейной и канонической интерполяции, мы видим в ряде промежуточных узлов существенное отклонение значений, полученных по формулам линейной и канонической интерполяции. Более обосновано судить о точности интерполяции можно на основании получения дополнительной информации о характере моделируемого процесса.


(0,1) (2,5) (4,17)
Find equation

Tool to find the equation of a function. Lagrange Interpolating Polynomial is a method for finding the equation corresponding to a curve having some dots coordinates of it.

Answers to Questions

dCode allow to use the Lagrangian method for interpolating a Polynomial and finds back the original using known points (x,y) values.

Example: By the knowledgeof the points \((x,y) \) : \((0,0),(2,4),(4,16) \) the Polynomial Lagrangian Interpolation method allow to find back \(y = x^2 \). Once deducted, the interpolating function \(f(x) = x^2 \) allow to estimate the value for \(x = 3 \), here \(f(x) = 9 \).

The Lagrange interpolation method allows a good approximation of polynomial functions.

There are others interpolation formulas (rather than Lagrange/Rechner) such as Neville interpolation also available online on dCode.

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

What are the limits for Interpolating with Lagrange?

Since the complexity of the calculations increases with the number of points, the program is limited to 25 coordinates (with distinct x-values in the Q).

Ask a new question

Source code

dCode retains ownership of the source code of the script Lagrange Interpolating Polynomial online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Lagrange Interpolating Polynomial script for offline use on PC, iPhone or Android, ask for price quote on

Простейшим и часто используемым видом локальной интерполяции является линейная интерполяция . Она состоит в том, что заданные точки (x i , y i ) при (i = 0. 1, ..., n ) соединяются прямолинейными отрезками, и функция f (x ) приближается ломаной с вершинами в данных точках.

Уравнения каждого отрезка ломаной в общем случае разные. Поскольку имеется n интервалов (x i - 1, x i ), то для каждого из них в качестве уравнения интерполяционного многочлена используется уравнение прямой, проходящей через две точки. В частности, для i-го интервала можно написать уравнение прямой, проходящей через точки(x i -1, y i -1 ) и (x i , y i ), в виде

y=a i x+b i , x i-1 xx i

a i =

Следовательно, при использовании линейной интерполяции сначала нужно определить интервал, в который попадает значение аргумента х, а затем подставить его в формулу (*) и найти приближенное значение функции в этой точке

Рисунок 3-3- График зависимости линейной интерполяции .

  1. Решение профессиональной задачи

Ведем экспериментальные данные

ORIGIN:=0 Начало массива данных - считаем с нуля

i :=1..6 Число элементов в массиве

Экспериментальные данные организованы в два вектора

Выполним интерполяцию встроенными функциями MathCad

Линейная интерполяция

Lf(x i):=linterp(x,y,x)

Интерполяция кубическим спайном

CS:= cspline(x,y)

Строим кубический сплайн по экспериментальным данным

Lf(x i):=linterp(x,y,x i)

Интерполяция В- сплайном

Задаем порядок интерполяции. В векторе u должно быть на (n-1) меньше элементов, чем в векторе x , причем первый элемент должен быть меньше или равен первому элементу x , а последний - больше или равен последнему элементу x.

BS:=bspline(x,y,u,n)

Cтроим В- сплайн по экспериментальным данным

BSf(x i):=(BS, x,y,x i)

Строим график всех функций аппроксимации на одной координатной плоскости.

Рисунок 4.1-График всех функций аппроксимации на одной координатной плоскости.

Заключение

В вычислительной математике существенную роль играет интерполяция функций, т.е. построение по заданной функции другой (как правило, более простой), значения которой совпадают со значениями заданной функции в некотором числе точек. Причем интерполяция имеет как практическое, так и теоретическое значение. На практике часто возникает задача о восстановлении непрерывной функции по ее табличным значениям, например, полученным в ходе некоторого эксперимента. Для вычисления многих функций, оказывается, эффективно приблизить их полиномами или дробно-рациональными функциями. Теория интерполирования используется при построении и исследовании квадратурных формул для численного интегрирования, для получения методов решения дифференциальных и интегральных уравнений. Основным недостатком полиномиальной интерполяции является то, что она неустойчива на одной из самых удобных и часто используемых сеток - сетке с равноудаленными узлами. Если позволяет задача, эту проблему можно решить за счет выбора сетки с Чебышевскими узлами. Если же мы не можем свободно выбирать узлы интерполяции или нам просто нужен алгоритм, не слишком требовательный к выбору узлов, то рациональная интерполяция может оказаться подходящей альтернативой полиномиальной интерполяции.

К достоинствам сплайн-интерполяции следует отнести высокую скорость обработки вычислительного алгоритма, поскольку сплайн - это кусочно-полиномиальная функция и при интерполяции одновременно обрабатываются данные по небольшому количеству точек измерений, принадлежащих к фрагменту, который рассматривается в данный момент. Интерполированная поверхность описывает пространственную изменчивость различного масштаба и в то же время является гладкой. Последнее обстоятельство делает возможным прямой анализ геометрии и топологии поверхности с использованием аналитических процедур

ЗАДАНИЕ

на курсовую работу по дисциплине

Автоматизированные методы обработки результатов эксперимента.

Тема работы:разработка программы построения графика интерполяционного полинома.

Разработать программу построения графика с использованием формулы много интервальной кусочно-линейчатой интерполяции.

Таблица функции:

x
y 0,23 0,56 0,15 0,1 0,27 0,2

ВВЕДЕНИЕ

Система программирования Турбо Паскаль представляет собой единство из двух в известной степени самостоятельных начал: компилятора с языка программирования Паскаль и некоторой инструментальной программной оболочки, способствующей повышению эффективности создания программ.

Среда Турбо Паскаля – это первое, с чем сталкивается любой программист, приступающий к практической работе по программированию.

Целью данной курсовой работы является написание на языке Турбо Паскаль программы построения графика интерполяционного полинома.


ОСНОВНАЯ ЧАСТЬ

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Задача интерполяции.

Пусть задана таблица чисел {xi , fi}, i = 0, 1, …, N ; x0 < x1 < … < xN .

Определение. Всякая функция f(x) такая, что f(xi) = fi ; = 0, 1, …, N называется интерполирующей (интерполяцией) для таблицы .

Задача интерполяции состоит в отыскании (построении) интерполирующей функции (т. е. принимающей в заданных узлах интерполяции xi заданные значения fi) и принадлежащей заданному классу функций. Разумеется, задача интерполяции может иметь или не иметь решение (и при том не единственное), все зависит от «заданного класса функций». Необходимо выяснить условия, при которых задача интерполяции была бы конкретно поставлена. Один из способов интерполяции состоит в том, что интерполирующая функция ищется в виде линейной комбинации некоторых конкретных функций. Такая интерполяция называется линейной.

Линейная интерполяция.

Интерполяция по формуле при n = 1, т. е. с помощью линейной функции , называется линейной. При работе с кусочно-полиномиальными функциями абсциссы данных называются узлами, сочленениями или точками излома . Между этими названиями есть различия технического характера, но все три термина часто используются как взаимозаменяемые. Линейная кусочно-полиномиальная функция L(x) – это функция, определенная при всех x, обладающая тем свойством, что L(x) является прямой линией между xi и x i +1 . Определение допускает, что в промежутках между разными парами соседних узлов L(x) может совпадать с разными прямыми. Если ввести обозначения , , то формула линейной интерполяции может быть записана в следующем виде: (1)



Величина q называется фазой интерполяции, которая изменяется в пределах от 0 до 1, когда x пробегает значения от x 0 до x 1 .

Геометрически линейная интерполяция означает (рис. 1) замену графика функции на отрезке хордой, соединяющей точки (x 0 , f 0), (x 1 , f 1). Поскольку согласно формуле имеем и, следовательно, , то оценка максимальной погрешности линейной интерполяции на отрезке в соответствии с формулой имеет вид , (2) где .

Часто задают таблицу большого числа значений некоторой функции f с постоянным шагом h изменения аргумента. Тогда при заданном x выбираются два ближайших к нему узла. Левый узел принимается за x 0 , а правый - за x 1 , и осуществляется линейная интерполяция по формуле (1). Погрешность интерпо­ляции оценивается по формуле (2).

ПОСТАНОВКА ЗАДАЧИ

Разработать программу построения графика интерполяционного полинома с использованием формулы многоинтервальной кусочно-линейной интерполяции.